Tag Archives: cycle track

Translation of complete paper on German bikeways 1897-1940

I’ve prepared a full translation of the important paper by Dr. Volker Briese of the University of Paderborn in Germany about the history of German bikeways from 1897 through the start of World War II. This has previously been available only in German, or in a highly condensed version in English in the narrowly distributed Proceedings of the 1993 International Cycle History Conference. You may read the English translation here, and also find your way to the other versions as well if they are what you would prefer.

Monsere, Dill et al. — Not Yet a Review, But…

M. Kary, who prepared a review of the Lusk et al Montreal study, has had a preliminary look at the Monsere, Dill et al. study of barrier-separated on-street bikeways (“cycle tracks”) which the bicycle industry lobby PeopleforBikes is promoting as demonstrating their safety. Dr. Kary has given me permission to publish his comments here.

An Introduction To and Overview Of:
Monsere C, Dill J, et al. (2014) Lessons From The Green Lanes: Evaluating Protected Bike Lanes In The U.S. Final Report, NITC-RR-583

To begin with a platitude: traffic accidents are rare events. The totals are large only because the overall volumes of exposure are huge. Therefore, if considering safety in terms of outcomes rather than the underlying mechanisms of operation, any facility, no matter how poorly designed, will appear safe if examined over a short period of time.

But collecting data over a long period of time has its disadvantages too: not just cost and delay, but also the averaging, and therefore blurring, of the effects of various changing causes and circumstances. Nor does it work at all for facilities that are yet to be built. In response to these problems, engineers developed the methods of traffic conflict analysis. They can be seen as based on the following logical and kinematic necessities. First, in order for a collision to occur, the vehicles involved must eventually get on a collision course. Second, in order to get on a collision course, they must first get on a near-collision course. On the other hand, not all vehicles once on collision or near-collision course do end up colliding: their operators make course corrections and avoid that outcome. Such potentially dangerous but often ultimately safe trajectories, i.e. traffic conflicts, occur much more frequently than actual collisions, deaths, or injuries. If there exists a suitable relationship between the former and the latter, then conflict analysis can be used to study road safety at reduced cost, with better timing, and even via simulation modelling of facilities that have been designed but not yet built.

The theory and practice of conflict analysis for motor vehicles has been developed over something like a half a century of research. This has evolved to quantitative methods using not just traffic cameras, but also instrumented vehicles, automated data extraction, and theoretical concepts such as time to collision, gap time, gap acceptance, post-encroachment time, and many others. There is no such corresponding body of research for bicycles. Even if there were, it could never be as important to bicycle or pedestrian deaths and injuries as it is for the occupants of cars and trucks: for example, the latter vehicles never topple over at stops or just slip and fall, so that their occupants fracture an arm or strike their heads on a curb. In fact the majority of bicyclist injuries, even those requiring hospitalization, apparently involve only the bicyclist, making conflict analysis entirely or at least largely irrelevant to them.

On the other hand collisions with motor vehicles are major factors in cyclist deaths and injuries, and they are what cyclists worry most about. And even apparently bicycle-only crashes can be provoked by e.g. general fears or specific intimidations, or avoidance manoeuvres leading to loss of control. Thus there are also dimensions of traffic conflicts applicable to bicycling, but either inapplicable or less so to motor vehicle-only conflicts. Nor is every conflict visible or strictly kinematic: consider for example the effects of sudden and loud horn honking or engine revving.

With these fundamental limitations in mind, obviously traffic conflict analysis is a promising method for investigating important aspects of bicycling safety. The theory needs to be developed, so we can figure out what constitutes a high or low rate of conflicts, what types of conflicts figure what way into which accident types, and how vehicle operators and pedestrians cope with them, such as through hypervigilance, or avoidance of the area and thus diversion of problems to a different one.

Not only does the theory need to be developed, but also the methods of data extraction and analysis: the subjective review of traffic camera recordings, typically of low quality, is a mind-numbingly tedious, labour-intensive and error-prone task, that does not scale well.

The work of Monsere et al. (2014), Lessons From The Green Lanes: Evaluating Protected Bike Lanes In The U.S., should be considered a pilot project in this effort, although the authors themselves do not describe it as such.

Monsere et al. aimed to address six questions:

  1. Do the facilities attract more cyclists?
  2. How well do the design features of the facilities work? In particular, do both the users of the protected bicycle facility and adjacent travel lanes understand the design intents of the facility, especially unique or experimental treatments at intersections?
  3. Do the protected lanes improve users’ perceptions of safety?
  4. What are the perceptions of nearby residents?
  5. How attractive are the protected lanes to different groups of people?
  6. Is the installation of the lanes associated with measureable increases in economic activity?

Apart from noting that, as with most sociological research, their survey response rates were dismally low (23-33% overall, counting even only partially completed surveys as full responses), to produce a socioeconomically skewed sample (e.g. the bicyclists being 89% white, 68% male, 82% having at least a four-year college degree, and 48% with annual incomes over $100,000)— this overview of their work considers only the first part of their question No. 2.

Monsere et al. installed video cameras along short bicycle sidepaths (“protected lanes”, “cycle tracks”) constructed between approximately the summer of 2012 and the early summer of 2013 as part of the Green Lanes Project. These were in four U.S. cities, San Francisco (two 0.3 mile paths), Portland (one 0.8 mile path), Chicago (0.8 and 1.2 mile paths) and Washington (a 1.12 mile path; no cameras were installed in Austin, although sociological surveys were conducted there). They did their video recording chiefly at intersections, six in these four cities in the summer and fall of 2013. This was then presumably while the users were still in a cautious or exploratory state, as they got used to the new facilities.

Only 12-18, or in one case 20, independent hours of video were analyzed from each intersection. As each intersection examined was given a unique treatment, results cannot easily be pooled. These are very small numbers.

(This makes for substantially less than 120 hours total. The authors seem to say they analyzed 144 hours of video at intersections. This would mean that some of this total came from multiple cameras examining the same intersection at the same time. The authors do show frame captures from some of their cameras. This observer would find it difficult to correctly identify the conflicts from the views on display.)

As noted following the opening platitude, any facility, no matter how poorly designed, will appear safe if examined over a short enough period of time.

The six facilities examined were all so new (less than or little more than a calendar year old) that there were no injury or death data available for them. (For comparison, the entire city and island of Montreal, with all its thousands of intersections, averages of late about five cyclist deaths and 25-50 police-recorded serious cycling injuries per year.) Thus, there would not have been a way to use even many more hours of recording to examine for any relationship between the surrogate outcomes (conflicts, violations or errant behaviours) and the outcomes of most interest, deaths and injuries.

Further, as this was neither a before-after study nor a comparison with standard intersections, there is no way to know whether the numbers of observed conflicts, violations, or errant behaviours, were themselves high or low.

As to the actual results from this pilot project, the much touted headline was that there were only six minor conflicts found, out of nearly 12,900 bicycle movements through intersections. The most basic problems with this headline are:

1. It is the wrong comparison. The conflict rate has to be the number of conflicts divided by the number of occasions where at least two users capable of conflicting are present, e.g. a bicycle and at least one other bicycle, pedestrian, or motor vehicle. Thus the authors give figures of 7574 turning motor vehicles, but only 1997 turning motor vehicles with bicycles present. The corresponding conflict rates (which they normalize by the products of bicycle and motor vehicle movements, not by the numbers of bicycle movements alone) they give for the individual intersections therefore vary by factors of approximately 3 to 10, depending on which figures are used.

2. Six is the total of observed “minor” conflicts, not the total number of observed conflicts. There were also 379 “precautionary” conflicts with motor vehicles, 216 with pedestrians, and 70 with other bicycles.

3. Besides conflicts, there were numerous violations or other errant behaviours: e.g. 9-70% of bicycles and 7-52% of turning motor vehicles in the various intersection designs used the lanes incorrectly, 1-18% of turning motor vehicles in the various mixing zone designs turned from the wrong lane, 5-10% of motorists turned illegally on red arrows at intersections with bicycle-specific signals, and 7-23% of bicyclists disobeyed their signals.

4. Without any theory or model of how any of these occurrences or their frequencies relate to death, injury, or property damage, and without any before-after or non-sidepath comparison data— not to mention, with the very small numbers of observation hours— there are almost no safety implications, positive or negative. The only concrete result is that one of the local authorities apparently deemed the problem of motor vehicles turning from the wrong lane (18%), straddling lanes (another 17%), or entering the turn lane early (15%) to be so severe that they later removed the intersection treatment and replaced it with another design (at Fell and Baker in San Francisco).

5. The sociological surveys tell another story: one-third of all bicyclists surveyed said they had been involved in at least one near collision on the paths, while 2% experienced an actual collision. 23% had a near collision with turning cars, 1.8% an actual collision with turning cars; 19% a near collision with a pedestrian, and 0.4% an actual collision with a pedestrian.

In short: this is an interesting pilot project, whose methods are impractical for the amount of data collection needed for meaningful safety results. Even with better methods, conflicts are only one facet of the bicycling, and overall safety picture; while road designers and road users, whether bicyclists or motorists, have to consider more than just safety. Convenience, transit time, cost, and greenhouse gas emissions also matter. A cycle track that, like the downtown de Maisonneuve track in Montreal, lies largely dormant in the winter, but delays motor vehicle traffic in the winter and ties it up spring, summer and fall, will be of no help in reducing CO2 emissions. The much touted headline results from this study are selective, overblown, and misleading. Any facility will appear safe if examined over a short enough period of time, and surely 12 to 20 hours each is short enough.

Godzilla’s toothpaste decorates Seattle bikeway

A new bikeway has recently opened on Broadway in Seattle, Washington state, USA.

Someone has posted a video of a ride on the newly-opened bikeway.

(To get a better view of the video, click on “YouTube” and open it up full-screen.)

This is an uphill ride, very slow in most places. Traffic was light on the street, and even lighter on the bikeway. It will be interesting to see how the situation develops when traffic is heavier.

The bicyclist who made the video is clearly aware of the hazards, as he or she repeatedly checks for turning traffic before crossing intersections. Others might be more naive.

What most catches the eye though about this installation is the “Godzilla’s Toothpaste” barriers between the bikeway and parking spaces — an artistic touch, to be sure, though also a collision hazard, and sure to be pummeled by cars pulling into parking spaces. The toothpaste is visible a few seconds from the start of the video and also later.

As described by Seattle cyclist Joshua Putnam, the installation of the bikeway followed from a series of events, like a chain of dominoes falling over, except that some the dominoes were bicyclists. The first of these events was installation of a light rail line in the street. Then, bicycle crashes became much more frequent.

Light rail lines in streets are a serious hazard for bicyclists, from wheels’ getting caught in the flangeway, and from bicyclists’ having to choose their line of travel to avoid that risk. The problem is worsened by the tracks’ curving over to the edge of the street at stops — necessary so there can be a raised platform and wheelchair access.

To address the hazard it created with the trolley tracks, Seattle installed a two-way, one-side-of-the-street bikeway, on this two-way street. Such bikeways pose problems anywhere, due to the increased number of conflicts and unusual movements at intersections — but also much of Broadway is steep, and bicyclists traveling opposite the usual flow of traffic on the bikeway are going downhill. Crossing an intersection or driveway from right to left on the near side has been well-established as highly hazardous.

Before the trolley tracks, before the bikeway, bicyclists could travel downhill as fast as the motor traffic. Now, the safe speed is hardly more than walking speed, and with repeated checks for crossing and turning conflicts. As is the usual practice, large swatches of green paint have been spread on the street to demarcate zones where bicyclists and motorists operating according to their usual expectations are concealed from each other until too late to avoid collisions.

Motorcyclists also are at risk from the trolley tracks, but they are excluded by law from the bikeway.

Is the NACTO Guide a Design Manual?

In cities around the USA, politicians, under pressure from populist bicycling advocates, have pointed to the NACTO (National Association of City Transportation Officials) Urban Street Design Guide and directed their engineering staff to install treatments which it describes.

I’ll say right here that some of the treatments which the NACTO guide describes deserve attention and inclusion in national design standards — though their presentation in the NACTO Guide typically is flawed, inconsistent and incomplete. Why some deserving treatments are not included in the national design standards is a story for another time.

Other NACTO treatments are so troublesome that they are not widely applicable.

Engineers unfamiliar with bicycling issues may take NACTO designs at face value; other engineers may throw up their hands and comply, faced with the threat of losing their employment. Several engineers who have extensive background and expertise in design for bicycling have resigned, been fired or been demoted when they would not accept the NACTO designs.

What leads to these problems? To put it simply, the NACTO guide isn’t a design manual. It is a smorgasbord of design treatments formatted — right down to digitally-generated loose-leaf binder holes on what are, after all, Web pages — to look like a design manual to politicians and the general public. Bicycle manufacturers funded it to promote street designs which they expect will lead to greater bicycle sales. It lacks the vetting necessary for consistency and accuracy. Its purpose is to generate political pressure to apply the treatments it describes. It is weak on specifics: rife with errors, and with omissions even in describing the treatments it covers.

If I described all of my specific  concerns with the NACTO Guide, I’d be writing a book, so for now let’s just look at a two-page spread of the NACTO Guide, the pages about two-stage turn queuing boxes (2STQBs, for short).

Maybe by now you are inclined to think of me  as a naysayer, so, let me get down to some specifics to dispel that impression. I have had information about two-stage turn queuing boxes online for years, I think that they are a useful treatment, and I use two-stage turns: when I realize that I have reached the street where I need to turn left, but hadn’t merged to turn; when traffic is heavy and fast and I haven’t found an opportunity to merge; when ordinary left turns are prohibited. My favorite example is the left turn from Commonwealth Avenue onto the Boston University Bridge in Boston, Massachusetts, where a no-left-turn sign is posted: motorists have to go around a large loop.

Ok, now let’s consider the spread from the NACTO guide, below.

NACTO pages about two-stage turn box

NACTO pages about two-stage turn queuing box

I have placed that spread online as a PDF file, zoomable to any size you might like. You may click on the link or the image above to get a larger view while reading this text. The PDF will open in a separate browser window or tab. I’ve also posted parts of the NACTO pages in connection with the text below.

Issues of organization and use of technical language

The NACTO treatment of the two-stage turn queuing box presents issues of organization and of use of technical language.

Problems start with the title of the section. A proper title is not “Design Guidance”, otherwise, every section would be named “Design Guidance”. A proper title is the name of the device, here “Two-Stage Turn Queuing Box”. [And not “Queue” but” Queuing.”]

In a proper design manual, the terms “shall”, “should”, “guidance” and “option” go from strong to weak. “Shall” is imperative: for example, a stop sign shall be octagonal. Should, guidance and option statements are increasingly weaker, leaving more room for engineering judgment.

The terms “Required Features” and “Recommended Features” correspond roughly to “shall and “should” but do not have the explicit, legally-defined meanings of “shall” and “should”.

None of the drawings on the two pages are dimensioned, and no dimensions are given in the text. That is to say, these are not engineering drawings, they are only conceptual drawings. How big are the turn boxes supposed to be? Who knows? The width of travel lanes differs from one drawing to the next, but no explanation is given for that. When politicians start beating on the door for NACTO treatments, standards-setting bodies and traffic engineers have to try to fill in the missing information. For specific projects, that task often is passed along to hired consultants who make their living by promoting and designing special bicycle facilities. Yes, there is a conflict of interest.

Specific comments

Now, either click on the image of each section of the page below to open it in a separate browser tab, or zoom the PDF to at least 50% size so you can read the text in connection with my specific comments .(You may open it now if you didn’t already.)

Comments on the left-hand page

The left-hand page includes text which may look like design specifications, and drawings which may look like design drawings — to a layperson.

Left half of left-hand page


Point 1: “An area shall be designated to hold queuing bicyclists and formalize two-stage turn maneuvers.” This is under the heading “Required Features.”  A 2STQB is only one way to turn left among others, an option, subject to engineering judgment or specific design warrants. There is neither the room nor the need for a 2STQB at most intersections. Lacking here is any statement as to where a 2STQB is appropriate, but the “shall” statement here is inappropriate: appropriate shall statements would describe what features are required if a 2STQB is installed. As of May 2014, the 2STQB is still in experimental status with the Federal Highway Administration — as are all details of its design, and so no “shall” statement at all is appropriate.

A proper design manual would include guidance about speed and volume of traffic; the additional delay usually required for a two-stage turn; whether bicyclists might take an alternate route entirely; whether use of the box is  mandatory, placing bicyclists who make other types of turns in violation of the law.

Point 4: “In cities that permit right turns on red, a no-turn-on-red sign shall be installed.”

According to the wording here, if the installation is not in a city, the sign is not required.

But also, the shall statement is overly broad, and incomplete. The sign is needed only if right-turning traffic would be in conflict with the bicyclists waiting in the 2STQB: unnecessary in the cross street if traffic turns right before reaching the box or cannot turn right, and unnecessary on the entry street if the cross street is one-way right-to-left. Does the sign belong on the entry street or the cross street, or both? That is not stated. Details, details…

Point 6: The comma makes nonsense of this sentence. Where is the box to be positioned?

The other, subsidiary “should” and “may” statements on this page also are contingent on official approval of the underlying design, and are lacking in detail.

Right half of left-hand page


Something really leaps out at me here: take a look and see whether it leaps out at you too.

OK, ready? Three of the six illustrations show a line of travel (in blue) for bicyclists straight across an intersection and then illegally and hazardously turning right, directly into the face of approaching traffic in a cross street.

In showing this bizarre routing, the NACTO Guide also fails to address issues with the actual route which bicyclists might take.

Five of the six illustrations show that bicyclists would somehow turn 180 degrees in place. That requires dismounting and is slow and awkward. How would a bicyclist turn when the traffic light is about to change? When other bicyclists are already in the box? What about tandems? Bicycles pulling trailers? Bicycles carrying heavy baggage?

The drawings show a subtly implied but selectively addressed-threat: lanes where motorists travel are shown in a threatening shade of pink — whoops: except in the cross street where bicyclists ride head-on at motorists.

Four of the six illustrations show motor vehicles in right-hook conflict with bicyclists headed for the queuing box. The motor vehicles are turning out of the threatening pink area into what is portrayed as the safe zone– the right-hook zone. In two of the pictures,  vehicles have already impinged on the blue line which represents the path of bicyclists crossing the intersection. Green paint, which has become a catch-all warning of traffic conflicts in bicycle facilities, is shown in the queuing box, it is not shown in the conflict zone. (By way of comparison, Dutch practice in such conflict situations is that the motorist must always yield, and to use “shark teeth” markings to indicate a yield line.)

Two of the drawings show bike lanes in the door zone of parked cars.

The middle left illustration shows a receiving bike lane at the top, out of line with dashed markings in the intersection, so bicyclists bear right just before they cross a crosswalk, potentially colliding with pedestrians who would expect them to continue straight.

All of the illustrations show two-stage turns across two-lane one-way streets, though the two-stage turn queuing box is most useful where a conventional left turn is illegal, unusually difficult or hazardous — for example, when turning from a major, wide arterial street with heavy traffic, or one with trolley tracks in the median.

As already indicated, none of the drawings are dimensioned and no dimensions are given in the text.

Comments on the right-hand page

The right-hand page gives annotated pictures of conceptual installations, with angled views from overhead.

Left half of right-hand page


The street going from bottom to top in the picture is one-way, as can be inferred by the direction in which vehicles are traveling. That the cross street is two-way may be inferred from the locations of traffic signals and the existence of the queuing box. A real design manual would be explicit about how a treatment would apply, depending on the directions of traffic in the streets.

The end of the traffic island next to the queuing box protrudes so far and is so sharply as to make right turns awkward. No explanation or guidance is given on this issue.

Traffic signals are shown for motor traffic on both streets, but no traffic signal is shown facing the separate bikeway in the street!

Point 3: “Shall” — mandatory — wording differs from that in the same point as made on the opposite page. A real design manual would have a single, consistent statement. “Queue box shall be placed in a protected area.” The queuing box shown here is not protected from right-turning traffic in the cross street. How would that right-turning traffic be managed, or is it permitted at all? Such issues are addressed in a real design manual.

Point 6: “Optional queue box location in line with cross traffic.” The preferred queuing box, then, is not in line with cross traffic. On getting a green light, bicyclists in the queuing box would have to merge left inside the intersection unless there is a receiving bike lane after the intersection, but none is shown. Merging inside an intersection results in hazardous conflicts and is generally illegal. What warrants the choice of one or the other option? It isn’t stated.

Point 8: The illustration shows motorists and a bicyclist inside the intersection, and so they must have a concurrent green light — or, they would if any signal were shown facing the bikeway. Markings guide bicyclists across the intersection, but also into the path of right-turning traffic. The bicyclist and the motorist in the right-hand lane at the bottom of the picture are on a collision course if the motorist turns right.

What is the meaning of the curved markings adjacent to the bicycle parking in the middle of the street? Does the lane with bicycle parking start as a lane with car parking, additionally hiding bicyclists from turning motorists? Or is this an additional lane for motor traffic, discontinued at the intersection, precisely where more lanes are needed to store waiting traffic? Not shown.

Right half of right-hand page


There is a right-hook threat at both bike lane entries to the intersection.

Bicyclists headed from bottom to top in the bike lane are riding in the door zone of parked cars, and closer to the cars after crossing the intersection.

Point 9: As in the left half of the page, placing the queuing box to the right of the travel lane when there is no receiving lane ahead assures that motorists will overtake bicyclists in the intersection and that bicyclists will have to wait for motor traffic to clear before they can proceed. Motorists waiting to turn right will be stuck behind the bicyclists. Placement out of line with motor traffic is described as the option here, rather than as the preferred treatment as on the left side of the page, and the problem is acknowledged in the caption to this drawing, though no explanation for the different choices is given.

Point 10: A jughandle may be useful if traffic is so heavy or fast that bicyclists have difficulty merging to the normal left-turn position near the center of the street, but then traffic is also so heavy and fast that a signal is usually necessary, not merely to be considered — unless there is already one upstream.

Point 11: Yes, signage may be used, but what signage? A real design manual would show the signs and where they are to be placed.

Point 12: A bicycle signal might be installed, but where? for the entry? For the exit? Its timing?

Point 13: Guide lines, pavement symbols and/or colored pavement. Which? Where? Why?

Had enough?

Right-turn lane as dual-destination lane?

I’ve had criticism from an unusual side about the video below. The complaint, from another cyclist, was essentially that I was not following the rules of the road, not operating as the driver of a vehicle, by riding straight through in a right-turn lane. Most criticism about my cycling, and my cycling advice, comes from people who would rather that cyclists not have to ride on roads at all!

Allston to Cambridge by Bicycle via River Street Bridge from John Allen on Vimeo.

To answer this criticism, let me first provide some background.

Anyone who uses the roads in the Boston area , whether as a cyclist, motorist or pedestrian, soon discovers that the street markings often contradict the requirements of normal traffic movement. Of course this is what knowledgeable cyclists complain about as it applies to bike lanes — emphatically so in the Boston urban core, where there is rarely room for bike lanes outside the door zone. Door-zone bike lanes have been installed anyway ever since the Cambridge bicycle coordinator introduced them in the mid-1990s. (Now she has moved on to X-merges, bicycle sidewalks, jughandle left turns and bowling-alley bus stops, and the City of Boston is working to play catch-up.)

We don’t only have bike lanes in the door zone here, we have bike lanes in the taillight zone — like this one on Massachusetts Avenue in Cambridge.

Bike lane in taillight zone, Cambridge, Massachusetts

Bike lane in taillight zone, Cambridge, Massachusetts

When I had the opportunity to ride in Albuquerque, New Mexico a couple of years ago, I had a real eye opener: I saw and rode on bike lanes which are mostly functional rather than dysfunctional. They are on streets without parking; motorists merge across them to turn right. I realized that bike lanes in the Boston area give others a bad name.

The Boston area has a terrible reputation for bad driving compared with other cities. In my opinion. strongly backed up by statistics, this reflects cultural differences rather than reality. There is somewhat of a chip-on-the-shoulder, butt-into-line attitude among many Boston drivers. It probably goes back as far as the Blueblood vs. Irish struggles for political power of a century and more ago. Some drivers feel a sense of entitlement and an emotional need for self-assertion. But the rudeness also at times reflects the practical need to get going. A Boston driver more often has blindly to inch out into the path of a vehicle which has the legal right of way, simply to get into the stream of traffic, than in most other American cities. A cyclist who doesn’t understand this will feel continually abused and endangered; a cyclist who understands the need to assert lane position and right of way finds Boston a very easy and safe place to ride. I describe how to be that cyclist, here.

There aren’t good statistics on bicycling, but Boston has the lowest rate of pedestrian fatalities of any of 52 major US cities. Boston drivers may be rude, but also they are clearly more attentive than elsewhere. They have to be. They know that they have to keep their eyes open, and that the street design and street markings have to be taken with a grain of salt.

The conflict between markings and traffic movements here in the Boston area didn’t begin with, and isn’t restricted to, bike lanes. It results in the first instance from an attempt to impose standard road markings and channelization on streets which are too narrow to accommodate them, or on multi-way intersections which are too complicated.

In order to accommodate parking, there are quite a few travel lanes too narrow even to fit a conventional dual-track motor vehicle. Here’s an example.

Narrow travel lane next to parking, Franklin Street, Framingham, Massachusetts.

Narrow travel lane next to parking, Franklin Street, Framingham, Massachusetts.

There are also multi-way signalized intersections where traffic engineers threw up their hands and let traffic enter from more than one leg at a time and merge inside the intersection.

And now, zeroing in on the topic of this post, there are numerous situations where an empty right-turn lane parallels a congested through lane, and neither lane is wide enough for side-by-side lane sharing. Often there is also a receiving lane or shoulder after the intersection — as in the example shown in the video.

I completely agree that it is foolish and hazardous for cyclists to ride near the right side of a right-turn lane when headed straight across the intersection. That is the “coffin corner” situation that we lament when it kills a naive cyclist. But, on the other hand, I consider treating an empty right turn lane with a receiving lane or shoulder after the intersection as a dual-destination lane, and riding in its center or toward its left side, only to be a variation on the decades-old advice to choose lane position according to the rules of motion, and ignore the bike-lane stripe. I’m not alone in this, not at all. Installations formalizing this treatment have been made in a number of places in the USA. It is accepted under the Manual on Uniform Traffic Control Devices if shared-lane markings are used, though state laws generally still do not allow it. It is still in the experimental phase if a through bike lane is to be installed inside a right turn lane. That is documented on this page on the FHWA site.

Most importantly though, treating a right-turn lane as a dual-destination lane when it is empty, or lightly-used, or carrying slow traffic while the through lane is blocked, and riding at its center or left side does not violate the rule of destination positioning and does not lead the cyclist into a conflict. I yield when entering the lane (if there is any vehicle to yield to) and I never place myself to the right of right-turning traffic. I have never gotten into a hazardous situation by doing this. I must anticipate that a driver waiting in line in the through lane to the left may decide instead to turn right and enter the right-turn lane late. This is the same concern as when overtaking any line of stopped traffic, and the countermeasure is the same; stay far enough away from the stopped traffic to be able to avoid a merging vehicle.

In my opinion, the assertion that a cyclist should never ride centered or left in a right-turn lane when preceding straight across an intersection is rigid, legalistic, and impractical. But on the other hand, it doesn’t make sense everywhere, either as an informal practice or a standard treatment. That is why, in my opinion, a standard is needed to establish where it may be formalized, and education is needed, as always, so cyclists will be able to judge when it is advisable or inadvisable.

Further information: I’ve had the same issue raised about my advice on riding the 9th Avenue sidepath in Manhattan, and you may read about it in the documents, photo captions and video linked under the 9th Avenue heading here.

Danish story, video and comments on the Albertslund-Copenhagen “bicycle superhighway”

A reader pointed me to a news story on the politiken.dk blog about the Copenhagen/Albertslund “bicycle superhighway” which is getting attention and publicity. The reader’s comments on my previous post read:

Yeah, its kind of joke, but to be fair they are not called superhighways in Danish but Super bicycle tracks, and even then most agree that they are not really that super. There is a video of the entire route here if you scroll down a bit:


The two next ones which will open are another story though, as they mostly have their own right of way, and use viaducts or bridges to cross streets.

So, better things may be on their way, but…I ran the article through the Google translator, and it appears in the link below in (sort of) English. The page includes the sped-up video of the entire route.


Here’s the video — warning, Shell diesel fuel ad at start, and you can only stop the video when you click on it, see the ad again and click on it to open a bigger ad! This workaround was needed to make the video visible on this page.

The one unifying factor of this route is an orange line painted lengthwise to identify it. The first part of the route is relatively tame. Barriers, unprotected intersections and other hazards pile up near the end.

Some representative quotes (I’ve translated from Googlish to English, thanks to an online dictionary and my knowledge of the neighbor language, German.):

From the article:

“I did not expect that I just had to detour on ordinary roads in residential neighborhoods. I did not see much of the green wave that is supposed to be in town. I do not think you can call it a super bike path,” the [politiken dk test rider] concluded.

From comments on the article:

– The section of tunnel under Motorring 3 is dark and miserably lighted. There are many riding schools (which, incidentally, should be forced to close and move out into a rural area!). The tunnel is usually filled with horse s***, and because you can not see in these tunnels due to poor lighting, you can only hope that you do not ride through any of it.


– In the westbound direction, at the pitch-dark tunnels, you have to negotiate two sets of barriers. The point of these, other than to impede traffic, I do not know. But when you have to use all your mental energy to get through these, they constitute more of a hazard than a safety precaution.


I have commuted between Roskilde and the northwest part of Copenhagen 2-3 times a week on a recumbent trike with an electric assist motor for 6 months (http://ing.dk/blogs/pedalbilen). When I used the “super path” the trip was about 3 km and 15 minutes longer. Especially the part of the route in Albertslund is very indirect and inconvenient. There are detours, barriers and ramps in most places, and it will for example not be possible to ride in a velomobile, as far as I can judge. The new route is comfortable and free of exhaust, but as commuter route it gets a failing grade compared with Roskildevej [a parallel, 4-lane divided but not limited-access highway with one-way sidepaths].


– I didn’t see anything which shows that cyclists have priority over the other traffic. Unfortunately, the only thing new that I see is approximately 100 meters of new asphalt in two places near Rødovre, so that it is easy going. There are simply no real improvements for cyclists in relation to other road users! You can still find barriers, sharp turns, bumps and traffic lights. Why is there no new cycle path, e.g. along the western forest road, so you do not have to drive through neighborhoods with pedestrians and children playing? Why are barriers not turned 90 degrees, so users of the route have right of way?

Even if there were brand new asphalt on the entire route it would never merit the title “super”. Only when a route enables more or less continuous travel at high average speed (which motorists know from motorways) does it, in my opinion, deserve the massive marketing it is currently getting.


…Bus passengers cross the bikeway. It seems quite unreasonable that there are no islands at bus stops where passengers have to wait when they get on and off. Thus cyclists must stop, and so, so much for the “super bike path”.

A Second Look at the Boulevard de Maisonneuve

Main point I’m making with of this post: where’s the two-way, separated, “protected” bikeway in the Google Street View below? When I rode Montréal’s Boulevard de Maisonneuve bikeway in the summer of 2008, there were some nasty detours around construction projects. The Google Street View images in this post, shot at a later date, show an entirely different set of construction projects. Any great city is constantly renewing and reinventing itself, and so such problems are to be expected.

View Larger Map

Continue reading

Manufacturing traffic jams on Grand Street, Manhattan

Someone has watched my video of Grand Street, in Manhattan, and commented:

John, I watched the Grand Street video (which was kind of fun) but I couldn’t help but notice you are passing a lot of cars, which makes your average speed seem reasonable for the environment.

That average speed, including waits for traffic lights, was 5.5 miles per hour, half my usual. Yes, I do wait for the lights, though many New York bicyclists aren’t so patient.

Please have a look at the video so you can evaluate the rest of this post. Note especially the bus stopped in the street near the start of the video, because that will play in my comments.

Why were my riding companion John Schubert and I passing a lot of cars — and not only parked cars? The others were stopped cars. Even at 5.5 mph, you can pass stopped cars.

Grand Street is one block north of a major arterial, Canal Street, and carries overflow traffic arriving from New Jersey via the Holland Tunnel. In case you want more detail, I’ve posted photo gallery with maps online. I thank John Ciccarelli, John Schubert and Steve Faust, my companions in exploring Grand Street, for the commentary and photos which they contributed.

Here’s one photo, as an example — and you may click on it to see it in the photo gallery. That’s Steve Faust, in the yellow parka.

Trucks blocking the Grand Street bikeway

Trucks blocking the Grand Street bikeway

Grand Street passes through Manhattan’s Chinatown — accounting for the street vendors standing and walking in the bikeway near the end of the video. Grand Street also is where the infamous Chinatown intercity buses pick up and discharge passengers, to avoid paying to use the Port Authority terminal uptown.

Grand Street now has only one travel lane. A second lane was removed to create the bikeway. Whenever a bus stops — or any other vehicle stops in the travel lane — all other traffic stops and waits behind it. Traffic backs up for several blocks.

The bus drivers park the buses diagonally to prevent motorists from sneaking past and colliding with bus passengers, though this does not prevent bicyclists from sneaking past and colliding with bus passengers. You can see one of the buses parked diagonally near the start of my video.

The traffic backups, then, illustrate the law of unintended consequences. The backups result from the redesign that created the bikeway. Possibly, the designers thought that they would calm traffic by reducing Grand Street from two travel lanes to one, in the hope that the traffic from New Jersey would go elsewhere. It didn’t work. To calm traffic, you have to reduce the actual traffic, rather than to try to cram the same traffic onto a street which can’t accommodate it. Instead of calming traffic, the designers created traffic jams, increasing fuel consumption and air pollution.

My observation about traffic flow before the redesign is confirmed by an early, prototypical pre-Streetfilms video. The video stars Mark Gorton, the money man behind Streetfilms, and shows conditions on Grand Street before the redesign. Motor traffic flowed smoothly. Gorton shows vehicles stopped to load and unload, but they don’t block the street, with a second lane available for overtaking.

Gorton’s main concern is with width of the sidewalks, a valid concern in my opinion, though the sidewalks are in fact only narrow in some blocks, and Gorton takes his advocacy to the opposite extreme. He shows a Photoshopped example of how we need to “return control of the street to the communities that live here and the people that live here” by converting part of the roadway into an open-air restaurant — placing restaurant patrons elbow-to-rear-view mirror with moving motor vehicles, where the diners can enjoy a fine mix of food aromas and exhaust stench. This treatment reflects the influence of the “shared space” designs of British architect Benjamin Hamilton-Baillie. These treatments turn the entire street into pedestrian space, and tame motorists, because they can now safely travel only at pedestrian speed without killing pedestrians.

Tellingly, Mr. Gorton never mentions bicycling. Evidently, he had not yet discovered it.

“Return to the people” is code language for “take away space from motorized uses.” That is, to take control away from people who use motor vehicles and give it to “the people,” who all agree perfectly with the point of view expressed in the video. If that sounds vaguely Leninist to you, well, yes, I think so too. Ah, New York, where a wealthy hedge fund manager sounds off with Leninist rhetoric!

Real-world, American-style political pressures came to bear, and we now see the outcome. It’s rather clear that the community, some community — some people — residents, or business people, probably both, and for better or worse — wanted parking for motor vehicles, because there’s still nearly as much as before. On the other hand, Grand Street now has restricted loading zones — and not enough to meet demand. The business community either didn’t understand what would happen, or had too little political clout to demand more space.

Part of the street’s width was, however, “returned to the people” as a bikeway which is, in reality, a sidewalk extension, an outcome so predictable that I would have to laugh if the street hadn’t become such a traffic tangle, and if I weren’t required by law to ride on that sidewalk extension.

Bicyclists didn’t come out very well in this political exercise, and neither did motorists. Pedestrians came out best. They got their wider sidewalk, even if it is supposed to be a bikeway.

OK, now I’ve complained, so it’s my duty to offer a positive alternative.

Are you expecting a screed now on the joys of bicycling in Manhattan traffic on streets without any special treatment for bicyclists? Sorry to disappoint you, I’m not going to claim that Grand Street was a great street to ride on before the bikeway was constructed.

In my opinion, the Grand Street design is not thoroughgoing enough — not radical enough in one sense and not conservative enough in another. To make the street safe and attractive to bicyclists, including younger and less skillful ones, it would be necessary to displace through motor traffic to another street, and to get bicyclists out of the pedestrian zone. A way to accomplish that would be to traffic-calm Grand Street (or maybe another nearby parallel street) using barriers and diverters, more or less like the ones in Berkeley, California — so the street carries only light, local traffic.

In other words, transform the street into a neighborhood street, whose main purpose is local transportation at neighborhood-friendly speeds, like the bicycle boulevards in Berkeley — not a segregated mess, and not a pedestrian playground like upper Broadway in Manhattan. Many crosstown streets in Manhattan look promising for the treatment I propose, and are quite easy to ride now, even without intentional traffic calming.

If the volume of motor traffic were much lower, we might also consider widening the sidewalks where needed.

You may notice my heresy, from the point of view of segregationist bicycling advocates: some motor traffic must remain, as on the Berkeley streets, so the entire street doesn’t become a shared-space ped zone where pedestrians walk with abandon, and bicyclists have to play dodg’em.

John Schubert and I shot another video on Grand Street the same day. At the end of the video, you may view how motorists harassed us on a section without the bikeway, but while on the part with the bikeway, we waited over a minute for a Chinatown bus to unload, had to ride very slowly at one point behind a man with a food vending cart, and had to ride in the travel lane for several blocks where the bikeway was obstructed.

You might also have a look at this video by a unicyclist. It’s a bit shaky, but he comes to the same conclusions I do.

Seville: bikeway color choice by popular poll

Please excuse the Spanish in the illustration below — though really, the content is self-evident. English resumes after the illustration.

City of Seville, Spain poll for citizens to choose bikeway color

City of Seville, Spain poll for citizens to choose bikeway color

This post is a follow-up to the earlier one, “what color is your bike lane?”, which made the points, among others, that different pavement colors have specific, defined meanings, and some colors show up better than others under streetlights. These technical issues might not come to mind for José Average Citizen.

How did the city government of Seville, Spain address these issues? With the public polling form shown above.

A local cycling advocate has described the process on a Web page. A translation of the first lines reads:

The Seville authorities, who are going to spend 156 million Euros increasing danger for cyclists with a network of 77 km of segregated bikeways, most of them bidirectional — (Yes, bidirectional like these) has conducted a poll so that Sevillans can choose the color.

Very modern, participatory and democratic, yes sir!

The text continues:

Well, the first thing that is clear is that there is no way to select “none”. They’re going to screw you one way or the other, cyclist, whether you like it or not, with one or another color. So, choose, kid!

The page includes a parody catalog of colors — Brussels model: lilac, to attract women to cycling; Amsterdam model: phosphorescent green, promoting environmental consciousness; Copenhagen model: blood red, to reduce the visual impact of crashes, etc. Here’s the London model (click on it to enlarge it).

Translation: "London Model: disco laser blue. Excellent to provide good nighttime visibility. Will attract the younger set, danceaholics and night-owls to the bikeways. Use your bicycle 24 hours per day!"

Translation: London Model: disco laser blue. Excellent to provide good nighttime visibility. Will attract the younger set, danceaholics and night-owls to the bikeways. Use your bicycle 24 hours per day!

In fairness, the colors shown are not necessarily the ones used in those cities — the red for Denmark and laser-blue for England are reversed and a couple of the other colors are, well, imaginative — but, on the other hand, the quote from a safety study cited along with each proposed color is genuine.

Here’s a link to the cycling advocate’s page:


What did Seville get as a result of its advanced bicycle program? Among other things, it got to be the site of the 2011 Velo-City conference, where Euro bicycle program planners meet, greet and trade ideas. More about Seville will follow — stay tuned.

Report from Seville

A Spanish advocate of integrated cycling about conditions in Seville:

Disastrous: officially (according to the Seville City Council), some 120 km of segregated cycle lanes (most of them bidirectional) have been built at an official cost of 30 million Euros. (I say “officially” and “official” because I wouldn’t trust the Seville City Council to tell me the time of the day); there is also a bit of gossiping around (plausible enough, although there is no way to verify it) saying that a sizable part of that sum has been put not into the actual building of the structures, but into the political and social marketing campaign to sell the “Seville model of bicycle promotion”; one of the most visible elements of this marketing campaign has been this year’s Velo-City conference, held recently in Seville (http://www.velo-city2011.com/), conveniently, just a few weeks before the upcoming local elections.

The mantra of the Seville City Council’s campaign is something to the effect that “the cycling mode share in Seville has risen from 0.2% to 7% as a result of our commitment to segregated structures”. The numbers used change from time to time (essentially, they say different things to different publics at different moments: a couple years ago it got as high as 8%; now the most-repeated mark is 6.6%), with another often repeated line being that “Cycling in Seville has increased ten-fold in five years (as a result of our commitment blah blah blah…)”.

If you read Spanish, you can read an analysis debunking some aspects of the Seville City Council’s bull**** in this blog post by a member of the growing community of Spanish vehicular (or integrated, as we often like to call ourselves) cyclists:
http://bicicletasciudadesviajes.blogspot.com/2011/02/cambio-modal-realidad-o-ficcion.html [Translation of blog name is “urban bicycle trips” and of the title of the post is “mode shift, reality or fiction”]

I commented on this issue in this comments thread in an English-language blog you may know, when the blog’s author repeated a bit mindlessly the official crap:


The outcome is thoroughly disastrous at several levels: not only are the segregated structures senseless and completely substandard (I am using “substandard” in the British sense here, not implying that I accept any standard at all); the city is a showcase of lost opportunities to improve real cycling conditions placed right next to the segregated crap; the local dominant cycling culture has become one of passive-aggressive cyclestrians riding on sidewalks even in trivial streets; the social status of the cyclists AND PEDESTRIANS has deteriorated (the level of conflict between pedestrians and cyclists is appalling; you can feel the increased hostility of car drivers if you ride on the roadway in a street with a cycle lane, although I have to admit, much less so than I expected); the number of cars has not decreased at all; Seville is indeed becoming an example for other clueless cities to imitate; the segregated chaos is prompting a host of Kafkaeske local ordinances to regulate the behavior of the cyclestrians… but on the other hand, the number of cyclists who don’t buy into the crap any longer is growing (http://ciudadciclista.org), and even the fact that Seville has been so extreme and reckless in following the segregationist madness is in some ways acting to our advantage: Seville has wanted to become an amazing example: some of our efforts are now directed at turning it into a horrible warning.

I also asked about crash statistics:

Regarding your question about crash stats: the situation in Seville is that of a complete information blackout. As far as I know, there is just no data publicly available. Just to give you an idea of how things are around here: over one year ago there was an article in the local press stating that “according to the conclusions of a study soon to be made public, the cycle lanes are safe for cyclists”. As you can guess, no study has been published since. Fun, uh?

The article, and the parody of it I wrote are here:

The contrast with Barcelona (one of the other, if less maddened, bikelaneist black holes in Spain) is stark: In Barcelona, a report is published yearly, and the news was for two years straight that the bicycle accidents were rising significantly, although it appears that they are lately down again (haven’t paid much attention to the issue).

http://www.adn.es/local/barcelona/20080110/NWS-1167-aumentaron-accidentes-bicicleta-barcelona.html [NWS-1167 — increas in bicycle crashes in Barcelona]
http://www.lavanguardia.es/vida/20090430/53693094057/los-accidentes-de-bici-son-los-unicos-que-aumentan-en-barcelona-en-2008.html [Bicycle crashes are the only kind that increase in numbers in Barcelona in 2008]