Tag Archives: vehicle

Another deceptive poster

More evidence that the anti-car crowd can’t think its way out of a paper bag. Even when they could make a much better case for themselves.

Claim of space occupied by motor vehicles.

Claim of space occupied by motor vehicles.

The text, in Italian, reads “space necessary to transport 48 persons: auto, electric car, robotic car.”

Only, the cars aren’t transporting anyone. They are all parked. They would take up much more space if in motion, just to have a safe following distance. The robotic cars would take up somewhat less space, due to their quicker reaction time for braking, but still much more than shown in the picture.

Twice before on this blog, I’ve shown similar posters making similar claims, and each time, they have shown parked vehicles.

Here, Muenster, Germany poster.

Here, Seattle, Washington, USA poster.

Lessons of Spruce Street

I’m posting this in connection with the video I shot of a ride on Spruce Street, Philadelphia, Pennsylvania, already embedded in an earlier post. Spruce Street is a one-way street with parallel parking on the left side, and a bike lane on the right side except for a couple blocks where there is parallel parking on the right side also. Here’s the video. You may click on it to enlarge it. It is a high-definition video, best viewed full-screen.

Now, I’ve quite often been accused at times of being a militant vehicular cyclist.

Militant vehicular cyclists are stereotyped as disparaging all bike lanes, always preferring mixing with motor traffic.

In fact, in my ride on Spruce Street, I was being pragmatic: using the bike lane when it worked for me, leaving the bike lane when the general travel lane worked better. The bike lane worked quite well for me when I chose to use it. It safely allowed faster motorists to overtake me, and me to overtake slower motorists, between intersections.

But now, a Philadelphia cyclist, K.K. (I’ll just use initials) has turned the vehicular cycling complaint on its head, accusing me of being subservient to motorists, because I did not always stay in the bike lane on Spruce Street in Philadelphia. I’m going to try to probe the rationale for this.

What would explain K.K.’s complaint? She doesn’t say. I can only speculate. So, I’ll do that.

I spent a bit more time waiting than if I’d always ridden up to the intersection in the bike lane, but I don’t think that is the point. Assertiveness, for K.K., amounts to territoriality, as in: “the bike lane is my part of the street, and by not using it 100% of the time to get ahead, you are failing to stand up for cyclists’ rights.”

It also appears to me that K.K. thinks that militant use of the bike lane sends a message that will lead to improvements in motorists’ behavior so they respect bicyclists more, and safety will improve — the “safety in numbers” argument. Perhaps. But don’t count on it to save your life.

And it also appears that she thinks it is actually safer to stay in the bike lane, which is a sad situation, because people are getting killed by riding in the bike lane up to the coffin corner before intersections. Large trucks have been turning right from the next lane, knocking bicyclists down and running over them.

Topping off the irony, the remedy to the coffin-corner crashes now being proposed by the Philadelphia Bicycle Coalition is to force bicyclists into the coffin corner by placing a barrier between the bike lane and the general travel lane, creating what is ironically called a “protected bike lane.”

If you would like to see the specifics of K.K.’s complaint, and my responses, they are here. Yes, I know that a logical dialog doesn’t work with people whose minds are closed. But it may be useful for others to get a taste of how such minds work.

Spruce Street, Philadelphia

Bicyclist Emily Fredericks was killed, crushed by a right-turning garbage truck, on Spruce Street in Philadelphia on November 29. Another bicyclist, Becca Refford, was similarly right hooked a block away on Pine Street on December 8 and suffered serious injuries. I happened to have video of a ride I took on Spruce Street, including the crash location. I put editing of this video onto the fast track, adding narration about how to ride safely on this street, in the interest of preventing future such tragic and avoidable crashes. Please share with friends in Philadelphia.

This is high-definition video and is best viewed in YouTube at 1080-line resolution, or the highest resolution your monitor will support, if less than that. Click on the video to bring up the link to the version on YouTube.


The cyclist’s comment on this Youtube video: “This is why turn signals are important. Had she used a turn signal, I would have stayed back and let her turn. But because she didn’t use one, I assumed she was going straight.”

Let’s take a look into the situation.

The car was initially stopped, second in line at a traffic light. Then the light turned green. The cyclist was approaching in the separated bikeway from the car’s right rear, off to the side. As the motorist initiated her turn, the cyclist wouldn’t be visible in the motorist’s passenger-side rear-view mirror. The motorist would have had to turn her head sharply to the right to see the cyclist, but she needed to look ahead to steer and avoid other potential conflicts. Yes, she should have used her turn signal, but again, she was supposed to yield to the cyclist, not the other way around, and the location of the bikeway made it easy for her not to notice the cyclist.

What are solutions to this problem?

* Well, certainly, drivers should use their signals.

* Bicyclists need to be aware of these conflict situations, and it’s best not to make assumptions.

* Bikeways like this create the appearance of safety because they assuage “fear to the rear” but in urban and suburban areas, most car-bike crashes are due to crossing and turning conflicts, including the one shown in the video, the classic “right hook” — and also the “left cross” (car turns left into the path of an oncoming cyclist). This is a two-way bikeway on one side of a street and so it placed the cyclist farther outside the view of the turning motorist, and can also lead to “Left hooks” and “right crosses”. Germany no longer recommends two-way bikeways like this, as the safety record has proved to be especially poor.

* To avoid these conflicts, the bikeway needs an exclusive signal phase when other traffic doesn’t turn across it. But that will result in more delay for bicyclists and motorists alike. This bikeway also crosses driveways where the barrier is interrupted.

* A bikeway in a corridor separate from streets, a bike route on lightly-used streets, ordinary striped bike lanes or wide outside lanes avoid the problems with a separated bikeway.

The location, in Seattle, Washington, USA.

Michael Colville’s Pitch

About the video here by Mikael Colville of copenhagenize.com:

Mikael Colville’s talk in the video is introduced by a video clip of a rather sorry infrastructure situation, with a crowd of bicyclists slowly making their way forward, cramped in a narrow passage to the right of an opaque barrier, while a line of cars turning right must yield to the cyclists after turning past the barrier. To me, this choice of a clip conveys the message “look, we are morally superior, motorist, we’re going to make it hard for you: you have to yield to us.” It doesn’t say anything about making bicycling more convenient, or anything but a nuisance to people who might think of switching from motoring. Or that whoever chose this location had any other sense about infrastructure — certainly none about sight line hazards.

And the music — the Rolling Stones’ Sympathy for the Devil! Now there’s an odd choice!

Similarly, at the end, there is an overhead drone shot of a bridge which has recently been restriped from four to two lanes of motor traffic, to add street level bike lanes next to already existing bikeways behind curbs. The implication is that bicyclists are winning by taking space away from motorists, and that space is to struggle over, not to share. In this case, on a bridge, I’d agree that bike lanes are suitable, but are four needed? What happens where they turn off at the end of the bridge while motor vehicles can go straight? We don’t see. Who knows?

The talk is all about marketing. The core of his message is that guilt-tripping people about environmentalism doesn’t work, and we must use marketing to make bicycling look attractive. Two products which Colville discusses for purposes of comparison, sewing machines and vacuum cleaners, are both highly useful labor-saving devices which quickly became popular for that reason, but he doesn’t mention that. He does praise improvements which made them more compact and useful in the home, but mostly, he praises the decorations on sewing machines which made them more attractive to homemakers.

My mother owned a Singer treadle sewing machine, and indeed it was a beautiful product — to some degree because of the flower stencils but also because of its elegant product design, with a table to hold supplies and attachments, and into which the machine could be folded down to make the table useful when the machine wasn’t in use. Treadle power was perfect for the pre-electrical era, and the wheel on the right end of the machine could start, slow or stop it with precision. Not to speak of my mother’s machine’s being several decades old and still working perfectly.

My mother also owned a 1950-ish Kenmore (Sears brand, made by Electrolux) vacuum cleaner, and it was an esthetic horror, shaped like an airplane fuselage, painted dull gray and very loud. She made much more use of the vacuum cleaner than of the sewing machine.

Colville says that we must market bicycling like these products. He deprecates “the 1%” of people who will wear fancy cycling clothing” — guilt by association with political class struggle, divisive, and also a reference to the categorization which Roger Geller made up, pulling the numbers out of his head, only to be followed up by a home-town study which found that his numbers were exactly right (surprise!).

Colville says that people are conservative and don’t want to stand out. But, tattoos peek out from under his plain white T shirt.

I don’t think that bicycling can be sold by marketing alone. It must be practical and useful like a sewing machine or vacuum cleaner, or people won’t use it for daily transportation. Though some people like to show off with Spandex and carbon fiber bikes, others wear street clothes and ride beater bikes. Some do both. Should instructors even care? We make bicycling more practical for any cyclists by helping them to do it well — and offering informed opinions on what works, or not, in bicycle planning and infrastructure.

Duck Boat crashes

We had a duck boat run into a motor scooter from behind on Saturday, May 7, 2016 in Boston, killing one of the riders. It isn’t clear from the news story why this happened, though I expect that the poor forward visibility from the duck boat was a factor. Did the motor scooter operator pull ahead of the duck boat, riding and stopping in its large blind spots? Or did the duck boat operator run into the back of the motor scooter in spite of its being in hiss field of view? As usual with crashes involving two-wheelers — bicycle, motor scooters, motorcycles — and despite there having been many eyewitnesses, the Boston Globe offers no information as to the cause of the crash. Investigation is underway, although if it proceeds as with recent bicycle crashes, detailed results may not be made available for a long time, if at all.

Another duck boat crash occurred in Seattle, 5 killed, 62 injured — but that one was due to failure of an axle, which sent the duck boat into the side of a bus in an oncoming lane of traffic.

What is to be learned from these crashes?

For one thing, the duck boats are surplus from the Second World War. Though they served gallantly in that war, they are over 70 years old now: mechanical failures are not out of the question. The duck boats’ design as amphibious vehicles placed the driver high above the road over a high hood, with poor visibility to the front — a problem which has led to fatalities of pedestrians in crosswalks with large trucks. The duck boats do not have a front bumper, but instead, have a hull which can push unfortunate pedestrians, cyclists and vehicles underneath. These vehicles probably would not be legal, except that they are antiques.

Another issue with the Boston crash may be of education. Did the motor scooter driver not understand the peril of riding in blindspots of large vehicles? Boston is relentlessly installing bicycle facilities which direct bicyclists to ride into blindspots. It does not appear that the collision involved any such installation, but motor scooter operators are permitted under the law to use them, and their existence, along with a lack of instruction as to their perils, contributes to hazardous behavior elsewhere as well.

In the context of all these issues, my misgivings about the Vision Zero campaign described in the Boston Globe on April 17 need no further mention.

Lane Control on Lexington Street

Here’s a video showing a bicycle ride on a constant mile-long upslope, at speeds of 10 to 12 miles per hour (16 to 20 km/h), on a suburban 4-lane speedway with narrow lanes and no shoulders, the most challenging street in the community where I live. Motor taffic was very light, and auite fast. Points made:

  • Lane control is not about riding fast: it is about controlling one’s space.
  • Lane control is necessary so motorists will overtake at a safe lateral distance on a street with a narrow right-hand lane.
  • By requiring motorists to make full lane change, lane control lets a cyclist with a rear-view mirror confirm well in advance that motorists will overtake with a safe lateral distance.
  • With the light traffic on a multi-lane street, a slow bicyclist does not cause any significant delay to motorists.
  • Most motorists are cooperative.
  • A few motorists are abusive — even though they can easily overtake in the next lane —  but they too overtake safely.
  • American traffic law supports lane control.

Lane Control on Lexington Street from John Allen on Vimeo.

Some thoughts about self-driving cars

Google’s report on its self-driving cars:


Most than half of the collisions reported in this document are slow-speed rear-enders of the Google cars. That’s unusual. It might be that the behavior of the Google cars is more cautious than what human drivers expect, so the Google cars stop more often abruptly or at unusual places, and so are not tailgater-friendly. I’d suggest that the Google cars might be equipped with a rear-facing warning device.

It seems to me that self-driving cars will be able to avoid any collision where a human driver could avoid fault, and others. In other words, operators of non-automated vehicles (including bicycles) and pedestrians who follow the conventional rules of the road will be able to operate safely around automated vehicles. Vehicles with automated crash avoidance (not necessarily completely automated vehicles, even) will not rear-end bicycles, and so the premise of fear from the rear evaporates if automated crash avoidance becomes universal with motor vehicles. Self-driving cars will not be able to avoid collisions where avoidance would require violating the laws of physics. Vehicles with automated crash avoidance will be able to avoid some collisions in which the potential colliding vehicle or pedestrian is outside the field of view of a human driver, such as right-hook collisions, as long as there is a clear sight line to the automated vehicle’s sensor. Same for a large truck’s high hood which prevents the driver from seeing a pedestrian crossing in front.

Automated vehicles will not be able to avoid left-cross collisions where the bicyclist or motorist is passing on the right of other vehicles and concealed by them, or pedestrian dart-out collisions. The concept of fully networked vehicles is supposed to address this problem. All vehicles approaching the same place in the road network are envisioned as communicating with each other even when they are hidden from each other’s view. As someone with an electrical engineering degree, I consider this at best a very difficult proposition, and it might be described as a pipe dream. Bandwidth, interference and reliability issues lead me to ask “what could possibly go wrong?” Also, instrumenting every object on the road is only practical on a limited-access highway — no, not even there, because there will still be breakdowns, wild animals, debris. On other roads, is every pedestrian going to carry a transponder? I don’t think so.

Automated crash avoidance is easily hacked by rolling a trash can out into the roadway, and the like. The caution which automated crash avoidance inherently incorporates changes the dynamic from the one among humans, which can involve a game of bluff. To me, this means that automated vehicles will be extra-cautious in the presence of other drivers and pedestrians who do play the game of bluff, and so the progress of automated vehicles will be slow and erratic in, for example, Boston traffic.

All this leads to the question: does behavior change as these vehicles become more common? Does infrastructure change? Every new technology takes a while to find its feet. As Marshall McLuhan said, “We look at the present through a rear-view mirror. We march backwards into the future.” Do conditions become better or worse for bicyclists and pedestrians? And why? We have some control over this depending on the direction which is set for the technology, but also, time will tell.

Another serious issue I’ve heard mentioned is the car which is not only driverless but passengerless. There is potential for an increase in traffic if a car can be called to meet a person (like a passengerless taxi), or directed to drive around and around the block empty when a parking space can’t be found. I can’t say how serious this problem will be. To some extent, that depends on the extent of freedom afforded to people’s control over the driverless cars. It’s an interesting legal question involving private use of public space. We already face this question with congestion-pricing schemes. But on the other hand, fewer cars on the road might be needed, because the car-sharing model works better when a car can be called rather than only stationed. Again, time will tell.

Ogden, Utah skateboarder stop

There’s plenty of confusion to go around here.


Deputy: “I don’t care, you’re right in the middle of the road.” No, the boarder was on the shoulder, at least in the part of the video the TV station broadcast.

Was that legal? Bicycling is allowed on shoulders in many states. I couldn’t find anything on that on the Utah legislative site section on bicycles, http://le.utah.gov/xcode/Title41/Chapter6A/41-6a-P11.html.

But the man was on a skateboard, not a bicycle. Under Utah law, the skateboard is defined as a vehicle, last definition here: http://le.utah.gov/xcode/Title41/Chapter6a/41-6a-S1105.html and so, under the law, the skateboarder should have been in the travel lane, not on the shoulder or a sidewalk, if any, as little sense as that may make.

So, the officer’s charge was false. If the boarder were defined as a pedestrian, then shoulder use in the absence of a sidewalk would be legal if the boarder was traveling opposite the direction of traffic (he wasn’t), — not that this is sensible when it would have required crossing to the far side of a multi-lane road. http://le.utah.gov/…/Title41/Chapter6A/41-6a-S1009.html.

There is a sidewalk, as shown in Google Earth and Street View images.

The TV station video is edited at 00:25. It doesn’t show the entire conversation between the deputy and the boarder before the boarder attempted to flee — so we don’t know about an opportunity to comply. Other question is how the boarder could comply if there was nowhere to go except up and down a road bordered by vegetation. The deputy ran after the boarder and attempted to stop him. Probably better to let him go. The boarder fought the deputy, violently. Not smart at all.

Change lanes in a roundabout?

Ohio cyclist Patricia Kovacs posted an e-mail asking some questions about roundabouts:

Ohio engineers are telling us to use the inner lane for left turns and U turns. Both the FHWA [Federal Highway Administration] and videos available on our local MPO [metropolitan planning organization] website say this. I shared this when we asked for updates to Ohio Street Smarts. If the FHWA and MORPC [Mid-Ohio Regional Planning Commission] are wrong, then we need to fix it.

Would you review the 8 minute video on the MORPC website and let me know what I should do? If it’s wrong, I need to ask them to update it. This video was made in Washington and Ohio reused it.

Looking further into the problem, I see a related practical issue with two-lane roundabouts, that the distance between an entrance and the next exit may be inadequate for a lane change. The larger the roundabout, the longer the distance in which to change lanes, but also the higher the speed which vehicles can maintain and so, the longer distance required. I’m not sure how this all works out as a practical matter. Certainly, turning right from the left-hand lane when through traffic is permitted in the right-hand lane is incorrect under the UVC [Uniform Vehicle Code], and results in an obvious conflict and collision potential, but I can also envision a conflict where a driver entering the roundabout does not expect a driver approaching in the inside lane of the roundabout to be merging into the outside lane.

All in all, the safety record of roundabouts is reported as good (though not as good for bicyclists and pedestrians), but I’m wondering to what extent the issues have been subjected to analysis and research. When I look online, I see a lot of roundabout *promotion* as opposed to roundabout *study*. Perhaps we might take off our UVC hats, put on our NCUTCD [National Committee on Uniform Traffic-Control devices] hats, and propose research?

Thanks, Patricia.

This post was getting long, so I’ve placed detailed comments on the Ohio video, and embedded the video, in another post. I’m also working on an additional post giving more examples, and I’ll announce it here when it is ready.

Here are some stills from the video showing the conflict between through traffic in the outer lane and exiting traffic in the inner lane.

First, the path for through traffic:

Path for through traffic in a roundabout

Path for through traffic in a roundabout

Next, the path for left-turning traffic:

Path for left-turning traffic in a roundabout

Path for left-turning traffic in a roundabout

Now, let’s give that picture a half-turn so the left-turning traffic is entering from the top and exiting from the right:

traffic in a roundabout, image rotated 180 degrees

Path for left-turning traffic in a roundabout, image rotated 180 degrees

And combining the two images, here is what we get:

Conflict between through traffic and exiting left-turn traffic

Conflict between through traffic and exiting left-turn traffic

The image below is from the Manual on Uniform Traffic Control Devices, and shows similar but not identical lane use. The arrows in the entry roadways direct through traffic to use either lane.

FHWA diagram of a roundabout with lane-use arrows.

FHWA diagram of a roundabout with lane-use arrows.

Drivers are supposed to use their turn signals to indicate that they are to exit from the inner lane — but drivers often forget to use their signals. Safe practice for a driver entering a roundabout, then, is to wait until no traffic is approaching in either lane, even if only entering the outer lane.

A fundamental conceptual issue here is whether the roundabout is to be regarded as a single intersection, or as a series of T intersections wrapped into a circle. To my way of thinking, any circular intersection functions as a series of T intersections, though it functions as a single intersection in relation to the streets which connect to it. Changing lanes inside an intersection is generally prohibited under the traffic law, and so, if a roundabout is regarded as a single intersection, we get the conflicts I’ve described.

Sometimes, dashed lines are used to indicate paths in an intersection, when vehicles coming from a different direction may cross the dashed lines after yielding right of way or on a different signal phase. More commonly, a dashed line  indicates that a driver may change lanes starting from either side. The dashed lines in a two-lane roundabout look as though they serve the second of these purposes, though they in fact serve the first. These are shorter dashed lines than generally are used to indicate that lane changes are legal, but most drivers don’t understand the difference.

That leads to confusion. If you think of the roundabout as a single intersection, changing from the inside to the outside lane is illegal anywhere. If you think of the roundabout as a series of T intersections, changing lanes should occur between the entries and exits, not opposite them –though there is also the problem which Patricia mentioned, that a small two-lane roundabout may not have much length between an entry roadway and the next exit roadway to allow for a lane change. That is, however, much less of a problem for bicyclists than for operators of wider and longer vehicles. It would be hard to construct a two-lane roundabout small enough to prevent bicyclists from changing lanes.

My practice when cycling in conventional two-lane traffic circles — and there are many in the Boston, Massachusetts area where I live — is to

  • enter from the lane which best leads to my position on the circular roadway — either the right or left lane of a two-lane entry;
  • stay in the outer lane if leaving at the first exit;
  • control the inner lane if continuing past the first exit;
  • change back to the left tire track in the outer lane to prepare to exit.

That way, I avoid conflict with entering and exiting traffic in the outer lane, and I am making my lane change to the right in the slow traffic of the circular roadway rather than on the straightaway following it. This is what I have found to make my interactions with motorists work most smoothly. Why should a bicyclist’s conduct in a roundabout be different?

It is usual to be able to turn right into the rightmost lane of a multi-lane roadway while traffic is approaching in the next lane of that roadway. I don’t know of any other examples in road design or traffic law in the USA where a motor vehicle is supposed to turn right across a lane where another motor vehicle is entering. Bike lanes are sometimes brought up to intersections, though the laws of every state except Oregon require motorists to merge into the bike lane before turning. The illustration below, from Dan Gutierrez, depicts the problem.

Right hook conflicts, from Dan Gutierrez's Understanding Bicycle Transportation

Right hook conflicts, from Dan Gutierrez’s Understanding Bicycle Transportation video and course.

Applicable sections or the Uniform Vehicle Code are:

  • 11:304 (b) — passing on the right is permitted only when the movement can be made in safety.
  • 11:308 (c) — a vehicle shall be driven only to the right of a rotary traffic island.
  • 11:309 (a) — no changing lanes unless it can be done in safety
  • 11:309 (d) — official traffic control devices may prohibit lane changes
  • 11:601 (a) Right turns – Both the approach for a right turn and a right turn shall be made as close as practicable to the right-hand curb or edge of the roadway.