Tag Archives: vehicle

Truck side skirts: reliable way to prevent cyclist fatalities?

No, not reliable. And they are also supposed to confer an aerodynamic advantage. Some do, some don’t.

Some have a smooth surface which can deflect a cyclist. That is still no guarantee that the cyclist will escape serious injury or death. Other side guards are only open frameworks which can catch and drag a bicycle. A lot of what I have seen is little more than window dressing.

The side guard in the image below from a post on the Treehugger blog has no aerodynamic advantage and could easily guide a cyclist into the rear wheel of the truck.

Photo of truck side with guard from Treehugger blog.

Photo of truck side with guard from Treehugger blog.

A cyclist can easily go under the side guard shown in the image below, from a Portland, Oregon blog post. A cyclist who is leaning against the side guard is guided into the sharp edge of the fender bracket and fender, and the front of the turning wheel, which can pull the cyclist down. There is another wheel behind the one in the photo.

Side guard on City of Portland, Oregon water transport truck

Side guard on City of Portland, Oregon water transport truck

The side guard on a Boston garbage truck in the photo below — my own screen shot from the 2013 Boston Bikes annual update presentation — is only an open framework which could easily catch and drag a bicycle.

Side skirt on City of Boston garbage truck

Side skirt on City of Boston garbage truck

A truck which is turning right off-tracks to the right. A cyclist can be pushed onto his/her right side, and goes under, feet to the left, head to the right. On the other hand, if an overtaking truck contacts the left handlebar end, or if the right handlebar end contacts a slower or stopped vehicle or other obstruction, the handlebar turns to the right and the cyclist slumps to the left, headfirst.

To be as effective as possible for either aerodynamics or injury prevention, side guards must cover the wheels. Though that is practical, none of the ones shown do.

But no practical side guard can go low enough to prevent a cyclist from going underneath. The side guard would drag  at raised railroad crossings, driveway aprons, speed tables etc. Even if the side guard did go low enough, it would sweep the fallen cyclist across the road surface, possibly to be crushed against a parked car or a curb.

Fatalities have occurred when cyclists went under buses, which have low side panels — but the wheels are uncovered. The Dana Laird fatality in Cambridge, Massachusetts is one example. Ms. Laird’s right handlebar end is reported to have struck the opening door of a parked vehicle, steering her front wheel to the right and toppling her to the left.

Dana Laird fatality, Cambridge, Massacchusetts, 2002

Dana Laird fatality, Cambridge, Massachusetts, 2002

The bicycling advocacy community, as shown in the blog posts I’ve cited, mostly offers praise and promotion of sub-optimal versions of side guards, a measure which, even if executed as well as possible, offers only a weak, last-resort solution to the problem of bus and truck underruns.

Most of the comments I see on the blogs I linked to consider it perfectly normal for motor traffic to turn right from the left side of cyclists, and to design infrastructure — bike lanes in particular — to formalize this conflict. The commenters also would like to give cyclists carte blanche to overtake close to the right side of large trucks, and place all the responsibility on truck drivers to avoid off-tracking over the cyclists.

Cyclists are vulnerable road users, but vulnerability is not the same as defenselessness. It is rarely heard from today’s crop of bicycling advocates, but a cyclist can prevent collisions with trucks and buses by not riding close to the side of them. There’s a wild contradiction in playing on the vulnerability, naiveté and defenselessness of novice cyclists to promote bicycle use with measures — particularly, bike lanes striped up to intersections — which lure cyclists into a deathtrap. Regardless of whoever may be held legally at fault in underrun collisions, cyclists have the ability to prevent them, and preventing them is the first order of business.

Want to learn how to defend yourself against going under a truck? Detailed advice on avoiding bicycle/truck conflicts may be found on the Commute Orlando Web site.

Additional comments about the political situation which promotes underrun collisions may also be found on that site.

Some observations about bike-share bikes

I recently spent several hours riding in Montreal with a companion who was using the Bixi bike-share bicycles. These are similar if not identical to others being deployed in North American cities. I have some experience riding a Hubway bicycle in Boston, too.

These bicycles are designed to meet different requirements, compared with a rider-owned bicycle. A few observations:

  • The user is relieved of the burden of servicing the bicycles. That is advantageous– there are no worries about flat tires or other mechanical problems. If a bicycle becomes unrideable, you walk it to the nearest rental stand and trade it for another. A related advantage, especially for city dwellers, is that there is no need to store or secure one’s own bicycle.
  • The bicycles are rugged, and so they are heavy.
  • The three-speed hubs are not overgeared, like those on classic three-speed bicycles. The top gear is about right for level-ground cruising. These bicycles climb better than the classic three-speed in the lower gears, but still, the limited gear range and weight of the bicycle make it unsuitable for steep climbs except when using the “two-foot gear” (that is: get off and walk). My companion found one Bixi bicycle with a Shimano 7-speed hub, which he used for part of our ride, but never found another despite looking for one among several dozens waiting at rental stands.
  • The bicycles have fenders, integral lights powered by a generator in the front hub, and a (front) baggage rack, all features necessary for practical transportation use. Additional baggage capacity would be nice but would require a rear rack.
  • The very low step-through frames and skirt guards either side of the rear wheel allow a person to straddle one of these bicycles even if hardly able to left a foot off the ground, and to ride in an ankle-length skirt.
  • The skirt guards carry advertising logos — a reminder that the bike-share (actually, bike-rental) program doesn’t pay for itself.
  • Many features of the bicycles are designed specifically to prevent vandalism and theft. Wheels are not removable using conventional tools, tire valves are not accessible, the seatpost cannot be pulled all the way out etc. Some of the anti-theft features come at the expense of performance…
  • My companion found that the seatposts on most of these bicycles could not be extended far enough for full leg extension, though he is a full 5’7″ (170
    cm) tall.
  • All the bicycles have flat pedals. If you prefer clip-in pedals or toe clips and straps, you’ll have to ride your own bicycle.
  • The street-tread MTB tires are inflated rock-hard. Evidently, protecting the rims rates higher than rider comfort.
  • Hub brakes — Shimano Rollerbrakes front and rear — allow rims to be out of alignment without affecting braking, but these brakes are weak. The front brake appears to have a power limiter, or else it is mismatched to the brake lever. Braking appears to reach a limit which does not increase, no matter how hard the lever is pulled. (I hope to do a braking distance test soon).
  • The black, padded saddles get uncomfortably hot sitting in the sun on a summer day.
  • The system recommends helmet use but doesn’t supply helmets. Boston is, as I understand, working on an automated helmet dispenser.
  • In both Boston and Montreal, rental stands are consistently placed in the street with the rear of the bicycle facing out into the street. Some are on busy streets. You must walk in the street and back the bicycle out into the street to disengage it from its dock. In many cases, the rental stand is on a one-way street or a street with a median, so the user must walk in the street or ride opposite the legal direction of traffic to get to the through street or bikeway which it services. Usually, one-way streets lead away from the serviced street, and so the travel opposite traffic is almost always at the start of the trip.
  • A user has to to walk to and from rental stands, same as bus stops. The bicycles don’t come with locks except to lock them to the rental stands. If you stop in mid-trip to have lunch or so shopping, you must bring your own lock, and the rental clock keeps running.
  • The Montreal system offers a 24-hour pass, but extra charges accrue for any bicycle that is kept in use for more than 1/2 hour. At cycle-track speeds while obeying traffic signals, that was good for 4 miles (6 km) or less. My companion would note where a rental stand was at the right distance to switch bicycles just short of the half-hour limit. The system made him wait two minutes before he could release another bicycle at the same rental stand. Even one minute over the 1/2 hour adds a charge of $1.75 for the next half-hour. The payment plan, then, provides a strong economic disincentive against longer trips.
  • Walk time seriously increases trip time beyond what it would be with the user’s own bicycle. On average, depending on distance of the start and end of the trip from the rental stand, the time overhead for a ride on one’s own bicycle is less even if it involves donning/removing special bicycling shoes, bicycle gloves and a helmet. There also is some uncertainty whether a bicycle will be available to start a trip, and whether there will be an empty space for docking at the end of a trip. Nonetheless, the program is popular.

I note that the on-street separated bikeways in Montreal have a speed limit of 20 km/h (12 mph). That is more or less what these bicycles are designed for. People riding their own bicycles commonly go faster. The design of the bike-share bicycles goes very much in the opposite direction from the racing spec hype that dominates the recreational cycling market.

All in all: when you ride one of these bicycles, you have been recruited into the bike mode share increase army. It’s like eating army food, which will fill your stomach but which is missing some of the nicer qualities of fancy cuisine or good home cooking. Or like sleeping in an army cot, which doesn’t quite compare with a bed in a fancy hotel, or your own bed at home. But then, an army provides for its soldiers, with a couple of tradeoffs, to be sure — the cost borne by the public at large, and the risk factor for soldiers.

Bike-share programs are structured as a public utility, as a form of public transit. The bicycles are requisitioned outside the usual stream of commerce of the bicycle retail industry. Whether the general sentiment in that industry is “a riding tide lifts all bikes” or that the competition is unfair, I don’t know. I did address that issue in an article I wrote for the sheldonbrown.com Web site on April 1, 2012 — please take note of that date when evaluating my article.

A Cyclist Signs Up for Advanced Driver Training

What was an avid cyclist doing in a place like this?

I like to ride my bicycle but sometimes I have to drive.

Over 40 years ago on dirt roads and snow in Vermont, I learned to steer into a turn; to manage the situation when a car loses traction, rather than to blank out or panic.

I shot the video above recently, in a class with hands-on driver training which goes well beyond that. All of the instructors are racers. They test the limits of traction at every turn on the racecourse. But here, they are teaching skills for crash avoidance on the road.

My son took the class with me. He had taken a conventional driver training course and already had his driver’s license, but he had no experience handling a car at the limits of traction.

The InControl course begins with a classroom lecture. Our instructor, Jeremy, explained that driver training is broken in the USA: that over 40% of new drivers have a crash within the first two years; 93% of crashes result from driver error and so, are preventable. He also explained that he would be teaching about steering, braking, hazard perception and avoidance.

Jeremy handed a quiz sheet with 16 questions to check off, true or false. We were told to hold onto our quiz sheets because we would review them later.

The most compelling part of the course is the hands-on practice. It is conducted under safe conditions on a closed course, in a huge, empty parking lot, in cars with a low center of gravity; an instructor is always in the car. As shown in the video, we did the slalom — at first with an instructor driving; then each student took a turn driving. We learned how great the effect of small increases in speed can be on the ability to maneuver. We practiced emergency stops, then swerving while braking; we had the backing demonstration and the tailgating test, as shown in the video.

To learn how to anticipate potential hazards takes time, and experience. The InControl class can discuss this but not teach this. A driving simulator like the ones used to train airline pilots would help to build that experience under risk-free conditions. Video gaming technology is approaching the level that it could do this at a relatively low price. Computers are up to the task, but they would need multiple visual displays and a special “driver’s seat” controller. Lacking that technology, I have traveled many miles with my son, both as a driver and as a passenger, coaching him. His many more miles of experience stoking our tandem bicycle were a fine lead-in.

What did I learn in this class, with my nearly 50 years of experience as a licensed driver? Several things of importance — among them:

  • Despite my decades of experience, I answered several questions on the quiz incorrectly. I’m not going to provide a crib sheet– go take the course.
  • There is a very significant advantage to having different tires for summer and winter use, due not only to snow but also to temperature difference. Winter tires have “sipes” — small grooves –to develop a “snowball effect” — actually picking up snow so it will adhere to other snow, and improving traction. Tires should be replaced when tread is still twice the height of the wear bars.
  • Side-view mirrors should be adjusted wider than I had been accustomed to — so their field of view starts where the windshield mirror’s field of view ends.
  • The National Highway Transportation Safety Administration’s standards for a 5-star safety rating are lower for SUVs than for passenger cars, as a result of industry lobbying (Any surprise?)
  • Importantly, that antilock brakes do more than allow shorter stops. They allow steering during emergency braking, and we practiced this as shown in the video.
  • Most importantly, to me as a cycling instructor, that learning to manage risks is essentially the same for bicycling as for driving a car. The attitude is the same, and hazard recognition and avoidance are similar. One important difference is that a well-trained cyclist’s brain is the antilock braking controller on a bicycle.

As I write this today, my son has driven himself to his classes at the local community college 12 miles away. Like any parent, I cross my fingers every time he goes out the driveway, but I am pleased to report that he has is cautious and calm as a driver and that his driving inspires confidence, with exceptions at a very few times.

I wish he didn’t have to drive. I don’t like the environmental burden it imposes, and I don’t like the risk. If public transportation were at all reasonable, he would be using it. If the college were half as far away, he’d be riding his bicycle at least on days with good weather. For now, his getting a college education wins out over those concerns…

Scaling up and scaling down

New York bicycling advocate Steve Faust has stated that some ways of accommodating bicycling do not “scale up” — that is, they work with small numbers of cyclists, but less well with larger numbers.

His central complaint is that use of roadways with no special bicycle facilities, according to the conventional rules of the road, does not scale up well.

I might put that a bit differently. After all, more cyclists need more room. Mass rides such as New York’s own 5-Borough Tour avoid special bicycle facilities and occupy the entire width of Manhattan’s multi-lane avenues. Motor vehicles are excluded while these rides pass through. Interaction within the group of many thousands of cyclists is for the most part according to the conventional rules of the road, and falls short only in that many of the participants are inexperienced.

On roadways carrying both cyclists and motorists, cyclists inconvenience motorists when the motor traffic could go faster — that is, when there are many cyclists and few enough motorists that they could travel unimpeded, if not for the cyclists. Motorists inconvenience cyclists when motor traffic is congested, and stopped or traveling slower than cyclists might want to go. Level of service always declines as a road becomes more congested, and it declines faster when vehicles have differing speed capabilities.

On the other hand, there also are situations in which operation as intended does not scale down to smaller numbers.

Motorists are more likely, for example, to yield to a crowd of pedestrians than to a single pedestrian.

Another example is the leading pedestrian interval: the walk signal goes on a couple of seconds before motorists get the green light. The leading pedestrian interval is intended to get pedestrians moving out into the intersection before motor traffic can begin to turn across a crosswalk, encouraging motorists to yield to the pedestrians. The same approach is used sometimes on bicycle facilities, for example on the Boulevard de Maisonneuve bicycle sidepath in Montréal, Québec, Canada. But a leading interval only works if there is someone waiting to cross when the signal changes. With smaller numbers, so the first pedestrian or bicyclist reaches the crossing after the motorists get their green light, the leading interval’s only achievement is slightly to reduce the capacity of the intersection.

The same issue can occur with any “conflict zone” with poor visibility as users approach, including the “bike box” or bicycle waiting area ahead of the stop line for motorists at an intersection. Once one cyclist is in a “bike box”, a motorist is unlikely to move forward, because that would require running over the cyclist. Therefore, the bike box is then safe for the entry of other cyclists, at least into the same lane in which the first cyclist is waiting.

The”bike box” works as intended when there are large numbers of cyclists so the first one arrives well before the traffic signal turns green.

If there are few cyclists, so the first one is likely to arrive just as the traffic signal turns green, then there is the potential for a right-hook collision, or a motorist’s colliding with a cyclist swerving into the bike box.

Safety requires that there be enough cyclists that early-arriving ones block the way of motorists, or at least alert the motorists that others may arrive. This safety factor does not scale down to small numbers.

Research in Portland, Oregon shows that only 5% of bicyclists swerve into the bike box when they are first to arrive; about 35% if they arrive later. The reluctance of the first-arriving cyclist reflects risk avoidance to some extent, due to not knowing when the traffic signal will change, but also that the swerve lengthens the cyclist’s trip — none of the Portland bike boxes are designated for left turns. The later-arriving cyclists are to some degree protected by the arrival of the first one, but also they either have to wait behind or move over to the left of that cyclist, into the bike box.

“Safety in numbers” claims become rather interesting when such issues are considered.

The design challenge is to achieve efficiency and safety of all travelers, regardless of whether numbers are large or small.

Confusion at crosswalks on multi-use paths

The crosswalk on a multi-use path has a mixed identity, unless the crossing is signalized. Motorists must yield to pedestrians in the crosswalk, but on the other hand, a stop sign facing the path normally means that cyclists yield to traffic on the road. It is certainly crucial for cyclists to slow, sometimes even stop, to check for cross traffic, and for motorists to yield to cyclists already in the crosswalk, but, again, the stop sign would normally indicate that the cyclists must yield. Confusion arises when a cyclist stops and intends to yield, then a motorist also stops — “you go first.” “No, you go first.” This causes unnecessary delay for both when the cyclist intended to cross behind the motorist, but now must wait until the motorist stops. Danger arises in addition when a motorist in a more distant lane does not stop. That motorist’s vehicle may be concealed from the cyclist by the one stopped in the closer lane — leading to the classic and ineptly-named “multiple-threat” collision. (Two crossing vehicles are involved, but the one in the nearer lane is stopped and does not pose a threat.) There would potentially be legal confusion as well in case of a collision, as both the motorist and the cyclist might claim that the other should have yielded!

Traffic theory: improving traffic signals to reduce pointless delay

A real-world time-space diagram, from Wikimedia commons.

A real-world time-space diagram

In theory, there’s no difference between theory and practice, but it practice, there is.

attributed to:
Yogi Berra
Jan L. A. van de Snepscheut
Albert Einstein

An optimal traffic-signal system would never present anyone with a red light or a don’t walk signal unless there actually is interfering traffic. In theory.

In practice, though, it may be desirable to introduce some delay in order to smooth the flow of traffic — to get vehicles on board a “green wave.” Traffic engineers think in sophisticated ways about this issue, but do not have the real-world tools to resolve it. While synchronized traffic-signal systems and sensor-actuated signals already improve the situation over uncoordinated timed signals, better sensing and more sophisticated software could, at least in theory, achieve much more.

Probably the most difficult part of the problem is in sensing approaching vehicles and pedestrians far enough ahead of an intersection so signals will change as they reach the intersection. Sensors are expensive, and many more would be needed. On the other hand, in a city dotted with security cameras, the sensor data may be easier to obtain, especially if traffic control is a goal when installing the equipment.

I am emphatically not describing so-called intelligent highway systems, intended to automate driving by taking control of vehicles. The driver then supposedly becomes a passenger, free to dial the cell phone, read the newspaper, watch TV or apply makeup without concern. For automated control to work, the system must exert at least as reliable control over vehicles as attentive drivers do. More yet: car makers have huge legal problems resulting from defects that injure only a small number of customers.

Automated control presently is applied only under very restricted conditions, on airport shuttle trains and the like. Even with a great increase in sophistication, it’s hard to conceive of how automated control (other than in collision-avoidance systems) would work on any roads except limited-access highways restricted to vehicles equipped for it.

Even under these conditions, there are difficult technical problems. Collision-avoidance systems to prevent collision with large objects ahead are just beginning to be common. Avoiding debris in the road, potholes and other smaller obstacles requires sophisticated sensing which a driver routinely performs — but well beyond the abilities of automated systems.

So, I am describing not a system to take over control of vehicles, but one to improve control of traffic signals. Humans would retain the ability to prevent collisions, and malfunctioning of the system would lead only to delay, not to crashes. The system would make little difference to anyone — motorist, bicyclist or pedestrian — except to reduce pointless delay.

Will this happen? If so, when and where? One promising thought is that it can happen bit by bit, at one intersection and another, rather than all at once along an entire highway.

Street Traffic Regulations: classic book online

My friend Bob Shanteau writes:

Another reason scofflaws give [to justify their behavior] is that traffic laws are intended only for motorists, reflecting a total ignorance of the origins of those laws.

Google has made the 1909 book “Street Traffic Regulation” by William Phelps Eno available online.

This book makes it clear that the first rules of the road preceded the dominance of the streets by motor vehicles. The behavior of … scofflaw cyclists now closely mirrors the behavior by all road users that Eno observed in the early 1900′s, leading to the need for street traffic regulation in the first place. He focused his efforts on education about his proposed rules of the road. That education is what the bicycle scofflaws of today sorely lack.

Davis Planners and Advocates Opine on Sidepaths

This post supplements my previous post linking to documents about Davis bicycle facilities. Please bear in mind that Davis was the first community to introduce bike lanes in the USA, and that its bicycle program strongly favors conventional bike lanes, which are separated from the adjacent lane only by a painted stripe. However, I have found that the Davis documents uniformly and strongly recommend against bike lanes behind barriers or parked cars. Not only that, the recent warnings are more definite than the early ones. Some quotes, starting with the most recent and working backwards in time:

Theodore Buehler, Fifty years of bicycle policy in Davis, CA (Master’s thesis, 2007). See pages 50 ff., “Lane location relative to motorized traffic”.

The early experiments included three different types of bike facilities (see examples at the top of this section):

  1. bike lanes between car lanes and the parking lane (Third St.),
  2. bike lanes between the parking lane and the curb (Sycamore Lane), and
  3. bike paths adjacent to the street, between the curb and the sidewalk (Villanova Ave.).

The first bike lanes included all of these types, to test them in real life to see how effective they were. The on-road lanes worked best, the behind-parking lanes were the worst, and the adjacent paths were found to work in certain circumstances. This is an example of the wide level of experimentation that occurred during this period. Had the city tried to do extensive research without construction, it might have settled on an inferior design. And not having tried all three designs, it might not have recognized it as inferior, and the entire experiment could have been declared a failure.

Dale Lott (one of the early advocates for special bicycle facilities in Davis, who also conducted research as to their safety and effectiveness), “How Our Bike Lanes Were Born“, op-ed piece which appeared in the Davis Enterprise in 2003:

We insisted on some experiments that turned out well and some that were flops.

One flop was on the first block of Sycamore north of Fifth where we put bike lanes next to the curb with parking next to the auto travel lane. It looked great on paper, but was a mess on pavement. When cars turned into the University Mall driveway, they crossed the bike lane. Both driver and rider, whose view of each other had been obscured by the parked cars, had an emergency situation.

David Takemoto-Weerts (University of California, Davis Bicycle Coordinator, A Bicycle-Friendly Community, the Davis Model (conference presentation, 1998)

Because Davis pioneered the bike lane and other bicycle facilities in this country, it is not surprising that some “experiments” were less successful than others. One such example was the construction of “protected” bike lanes where motor vehicle and bicycle traffic was separated by a raised “buffer” or curbing. In some cases, the bike lane was established between the parking shoulder and the curb line (i.e. cars were parked on the left of the bike traffic lane). Needless to say, any “benefits” of such facilities were soon found to be outweighed by the many hazards created for their users.

Most such well-intentioned, but ill-fated designs were phased out long ago. However, some facility design decisions made decades ago were not so easy to remedy. The most pervasive example in Davis is the two-way bike path immediately adjacent to a roadway. Particularly problematic are single two-way paths located on only one side of the adjacent road. The problems associated with these designs have been described in any number of publications, and they are well illustrated at several locations in Davis. In spite of this documentation, some residents, city officials, and developers remain quite vocal in advocating such facilities when new construction is being planned and designed. The city and campus have attempted a variety of mitigation strategies to reduce the hazards or inefficiencies associated with these side paths, but many observers believe that continuing to build such facilities is wasteful at best.

Deleuw, Cather and Company.: Davis Bicycle Circulation and Safety Study. 1972 (excerpt — for complete document in three parts, see table of contents page.

Protected lanes

…Protected lanes located between the parking shoulder and curb line have most positive separation. However, the parked cars create sight distance problems at driveways and intersections. Inability to cross streets in midblock in this type of treatment results in two-way usege which, in turn, leads to intersection problems described subsequently…

Sidewalk and Independent paths

Sidewalk pathways eliminate midblock bike-motor vehicle friction. However, frictional interference of pedestrians may discourage usage of these facilities as does frequent interruption by cross streets and driveways or meandering of the path. An additional problem is establishment of a visual relationship between motor vehicles on the sidewalk path on approaches to intersections…

I approve of this?

UPDATE: This post gives background information on the intersection. I have now ridden through it, and my opinion of it has changed. I have another post about it, and a video. Please check them out.


The image below shows a special installation of traffic signals and markings at the intersection of 16th street, U Street and New Hampshire Avenue NW in Washington, DC. To enlarge the image so you can read the text descriptions, click on it. You also may have a look at a Google map satellite view. Then please return to this page for my comments.

16th Street, U Street and New Hampshire Avenue NW, Washington, DC

16th Street, U Street and New Hampshire Avenue NW, Washington, DC

Pierre L’Enfant and Andrew Ellicott — and let’s also not forget African-American surveyor Benjamin Banneker — laid out Washington’s streets from scratch –  in the pre-automotive 1790s. Washington’s diagonal avenues give it an openness and unique sense of place — but the resulting uneven-length blocks and multi-way intersections make for some serious headaches now. Some traffic movements are odd, traffic signals can not be synchronized efficiently…

Before the new installation, no signals in this intersection faced new Hampshire Avenue. Bicyclists would sometimes use New Hampshire Avenue for through travel, though its conflicting one-way segments made that illegal and there was no conflict-free crossing interval.

The illustration above is from a page posted by the government of the District of Columbia describing a new installation of contraflow bicycle lanes, bicycle waiting boxes and special traffic signals. At first glance, these may raise the hair on the back of the necks of people who are suspicious of special bicycle facilities treatments.

Look again. The bike boxes look odd only because they connect with diagonal New Hampshire Avenue. They are cross-street bike boxes — which bicyclists enter from the left. Bicyclists from New Hampshire Avenue enter on a separate signal phase from the motor traffic on 16th Street, rather than to creep up on the right side of motor vehicles, as with more-usual bike-box installations. Motorists do not have to crane their necks or stare into a right-side mirror looking for these bicyclists.

The cross-street bike boxes are even more conflict-free than usual. Because only bicycle traffic runs contraflow, bicyclists do not have to negotiate with any right-turning traffic when entering the intersection.

To summarize: this installation, importantly, does not violate the fundamental traffic-engineering principle of destination positioning at intersections, as so many special bicycle facilities installations do.

Or, looking at the same conclusion from a different point of view, the installation does not require or encourage bicyclists to do anything dangerous or stupid, and it offers reasonable travel efficiency considering the situation it addresses.

I am not going to say that this installation is perfect. I can see the following issues.

  • Bicyclists’ having to wait through two traffic-signal phases is inconvenient and might lead to scofflaw behavior. A “scramble phase” could allow crossing in one step and might even apply to bicyclists arriving from other directions. It would reduce the time allocated to for all the other phases, but it might be practical, and preferable, at times of low traffic. Signals and markings which only apply at some times could, however, be confusing.
  • The installation addresses only bicycle traffic entering the intersection from New Hampshire Avenue. Traffic control remains as it was for 16th street and U street. Considering the many ways in which bicycle travel could be made slower and/or more hazardous in the name of making it better, this may be a case of “best leave well enough alone,”  but on the other hand, real improvements might be possible.
  • The bike boxes on 16th street could be interpreted as encouraging bicyclists on that street to overtake motorists on the right, then swerve in front of them, as is the more conventional with bike boxes.
  • Just outside the lower left of the picture on New Hampshire Avenue, there is wrong-way parallel parking next to the bike lane. Motorists exiting wrong-way parking spaces are in head-on conflict with bicyclists, but cannot see them if another vehicle is parked ahead. (See illustrated description of wrong-way parallel parking elsewhere, if the explanation here is unclear.) At the top right, on the other hand, note that the bike lane is farther from the curb: this segment of New Hampshire Avenue has back-in right-angle parking, avoiding the sight-line problem.
  • And, while we’re at it, I have another issue with the street grid, though it’s common to many other cities and not readily subject to correction. Streets that go east and west guarantee that twice per year,  for several days, the Sun will rise and set directly along the streets, glaring into drivers’ eyes.  If the street grid ran northeast to southwest and northwest to southeast, this would never happen. All you Pierre L’Enfants of today designing new cities, please take notice, here’s your chance to acquire a reputation as Pierre L’Enfant Terrible!

This installation is the subject of experimentation sanctioned by the U.S. Federal Highway Administration, with observation, data recording and analysis to see how it works in practice. The experimentation may turn up more issues, or reveal that some are of little importance.

Now, dear readers, you also may also have points to add to the discussion. Let the comments fly.

See also: GreaterGreaterWashington blog entry about this installation; Washington, DC Department of Transportation page about it; Google maps satellite view.

Guest posting: P. M. Summer on a new breed of bicycle professionals

P. M. Summer is the former bicycle coordinator of Dallas, Texas, who was removed from his job because of his conservative approach to bicycle facilities. I post the following with his permission:

There is a whole new breed of bicycle professional out there. They aren’t what we usually think of as cyclists, much less traffic engineers or transportation planners. They are most often urban planners and landscape architects, who have become virtual social engineers. They see their job as changing the way dumb old Americans live in favor of the ways enlightened Low-Country Europeans live.

The bicycle is a means to that end. In their eyes, the bicycle isn’t a vehicle (as code defines it), and never has been. It’s a shoe with wheels. Cynically, they usually add “pedestrian” to their title, while short-shifting pedestrians in favor of “pedalcyclists”.

Most of these new bicycle professionals have never used a bicycle as a regular transportation device (including the gentleman hired to replace me), believe the road (any road) is inherently unsafe for cyclists, and believe that a segregated network is the enlightened (and sole) way to dramatically change mode share.

It’s almost impossible to argue with folks like this, because the only common point of reference is the word “bicycle”, and by “bicycle”, they mean something very different than what I, or others who think like me, do.

The problems we point out about how traffic operates don’t register, because bicycles can never be “traffic” in their eyes. Traffic is always the bicycle’s enemy, and never the bicycle’s environment. People who operate bicycles are like swimmers in shark-infested waters to them. The brave and fool-hardy only need apply. “Normal” people know better, and stay on the side-path/walk/track/gutter.

Fifteen years ago I had the Texas DOT Bicycle Coordinator plead with me to quit defending placing bicycle facilities (signed bike routes) on streets with lanes less than 14 ft. wide. When I explained to him that I preferred 10 ft. lanes, I thought he was going to have a heart attack. “You can’t put cyclists in the way of cars!” he said.

There is a growing “bikes belong off the road” sentiment. Cycling Advocates are slow to support cyclists like Eli [Damon], or Reed Bates, or Fred U., [who have been harassed by police for exercising their legal right to use the road] because to defend them would be to say that it’s not unsafe to ride on the roads… and LAB, ABW, and APBP [the League of American Bicyclists, Alliance for Bicycling and Walking and the Association of Bicycle and Pedestrian Professionals] can’t afford to admit that.

Why can’t these new bicycle advocates admit that bicycles can easily operate as part of the transportation mix, instead of having to be segregated from it? To admit that makes the extravagant demands for special facilities clearly just that: extravagant demands. Andy Clarke, then of BikeFed [the Bicycle Federation of America, now the National Center for Bicycling and Walking; now Clarke is President of the League of American Bicyclists] once described the cost for a segregated bicycle facility as being “mere decimal dust” compared to the cost of automobile projects. That ‘decimal dust’ has turned into hundreds of millions of dollars in consultant and lobbyist fees, as well as “bicycle planner” salaries. Admitting that most of these facilities aren’t necessary for safe and easy bicycle transportation endangers too much money currently being poured into the new cottage industry of “Amsterdamning America”, and threatens too much personal power. Politicians, eager for popular (if unproven) quick fixes, are far more likely to endorse feel-good projects using other people’s money than they are to call for better educated and trained cyclists.

You may find more from P.M. Summer on his own blog.