Street Traffic Regulations: classic book online

My friend Bob Shanteau writes:

Another reason scofflaws give [to justify their behavior] is that traffic laws are intended only for motorists, reflecting a total ignorance of the origins of those laws.

Google has made the 1909 book “Street Traffic Regulation” by William Phelps Eno available online.

This book makes it clear that the first rules of the road preceded the dominance of the streets by motor vehicles. The behavior of … scofflaw cyclists now closely mirrors the behavior by all road users that Eno observed in the early 1900’s, leading to the need for street traffic regulation in the first place. He focused his efforts on education about his proposed rules of the road. That education is what the bicycle scofflaws of today sorely lack.

Posted in Bicycling, Books, Reviews | Tagged , , , , , , , , , , , , , , , , | Leave a comment

Alleycat racers

A British cyclist who goes by the online name gaz545 on YouTube has posted a version of one of Lucas Brunelle’s “alleycat race” videos, with voice-over commentary. Bravo gaz545!

Lucas Brunelle is, or was, a bicycle courier, but he distinguishes himself by shooting videos of the alleycat races — anything-goes races through cities, in urban traffic. The racers are mostly from the bicycle courier community. A Brunelle video is now making the rounds of 40 cities in a bicycle film festival.

Brunelle’s colleague Kevin Porter, who appears in some of his videos, served with me on the massbiek Board for a ocuple of years, something of an attempt to draw the courier community into mainstream advocacy.

Allow me to describe the fundamental difference between alleycat racing and responsible, sane cycling (or responsible, sane driving a car, for that matter — it’s the same idea).

The rules of the road establish who may go and who must yield right of way, so road users know what to expect of each other — but also, beyond that, in every situation where it is possible, both the road user who may go and the one who must yield are in full view of each other and able to avoid a collision if the other makes a mistake. Where sight lines are obstructed, traffic signs and signals direct road users to slow or stop, and allow them to take turns where flows of traffic cross.

Alleycat racers flout all this. They rely on their wits, and on guessing what other road users will do. They ride as if they were invisible. Much of the time, they are invisible, hidden behind sight obstructions where they can only guess what is around the corner. They ride opposite the direction of traffic, between lanes, where one driver’s slight change of direction will result in a head-on collision. They ride in extremely close quarters with vehicles which, if the driver doesn’t do as the alleycat has guessed, will sideswipe them, collide with them or run them over.

Alleycat racing is an extreme sport: a sport that involves a serious risk of severe injury or death — but more than that. Most so-called extreme sports, for example motorcycle jumping, involve only self-imposed risks. Participants in extreme fighting sports impose serious risks on their opponents, but by consent. Alleycat racers, on the other hand, impose serious risks on other people without obtaining consent and without warning. There’s an expression to describe this: breaking the social contract.

Brunelle’s videos are of high technical quality. Also, I’ll admit to some admiration for the skill of the alleycat racers. It is a level and type of skill normally required of a soldier in combat, a police officer confronted with an armed and violent offender, a cyclist or motorist facing an imminent threat of a collision. Skill is good. Any cyclist, any driver will face emergency situations occasionally. I’d think that perhaps the most skillful cyclist imaginable would be a reformed alleycat racer, if such a character exists.

Tamer motorists and cyclists can learn anticipation of hazards, braking, swerving — through training, and practice in the controlled environment of the skid pad or empty parking lot. My Bicycling Street Smarts turorial is one of a number of resources that teach these skills. But to put these skills intentionally to the test in the public streets is to court unnecessary risks, and to put other people at risk as well. The crash types and crash rate described in the Dennerlein-Meeker study of Boston bicycle couriers reveal the risks that couriers take — and the couriers aren’t even riding at nearly the extreme level seen in alleycat races.

Gaz545 doesn’t know of any injury that occurred during the London alleycat race, though I saw a number of very close calls in his video. However, in an alleycat race in Philadelphia which passed through the campus of the University of Pennsylvania, a participant came racing down off an overpass on a campus walkway — going from right to left here —


View Larger Map

(The break in the image of the overpass is due to the boundary between photos used in the satellite view)

The alleycat racer collided with a pedestrian — a student’s mother who was visiting the campus — knocked her down, injuring her seriously, and raced off. Other racers witnessed the incident. Police interrogated several but were unable to obtain identification of the hit-and-run racer from any of them.

Let’s describe the alleycat racers for what they are: outlaws who pump each other up to ever more extreme conduct in traffic, endangering others, not only themselves, and then when that danger results in injury to an innocent bystander, they adhere to a code of silence.

The pedestrian in the Philadelphia incident filed a lawsuit against the University for allowing the race to take place on its property, though the University had no idea that there would be a race. Suing the University was the only way that she could hope for any recourse.

It isn’t too far-fetched also to ask whether police might infiltrate the alleycat community to find out where a race is scheduled and perform an effective sweep-up. Alleycat racers are not “silly cyclists” (gaz545’s term, describing the cyclists in his other videos) making dumb mistakes in traffic because they don’t know any better. Alleycat racers act in wanton disregard for public safety. They do serious damage to the reputation of other cyclists as well, and I have very little sympathy for them.

(And here’s a link to Lucas Brunelle’s Web site, now that you have read what I have to say about it. There is no mention on it of the Philadelphia race, for whatever reason.)

Posted in Bicycling, Crashes, Laws, Reviews, Videos | Tagged , , , , , , , , , , , , , , , , , , , , | 6 Comments

Child passenger prohibitions — Massachusetts law, Oregon bill

Eli Damon, who lives in Massachusetts, as I do, has drawn attention to a bill introduced into the Oregon legislature to ban child passengers under 6 years old on bicycles. Eli cited an online article:

No Biking With Kids Under Six in Oregon?!

There’s a history to this kind of legislation here in Massachusetts. Eli’s message continues:

In Massachusetts it is illegal to carry passengers under one year old.
Either way, it arbitrarily paralyzes car-free/car-lite families. Eli

The below-one-year ban in Massachusetts occurred around 1990. Its wording was developed in a meeting in Washington, DC, organized by the Bicycle Federation of America (now the National Center for Bicycling and Walking). I’m not sure I have all of the details exactly right, but more or less, the BFA was the successor to the BMA (Bicycle Manufacturer’s Association), which represented the interests of a large segment of the American bicycle industry.

When domestic bicycle manufacturing fell on hard times, the BFA took more of its income from writing government reports. It still maintained a friendly relationship with industry — it championed the “more people on bicycles” — more bicycle sales — approach to bicycle planning, with the accompanying lack of concern for cyclists’ rights and responsibilities and for shortcomings of special bicycle facilities.

The League of American Wheelmen, as a cyclists’ membership organization, was more confrontational with the industry, especially around 1980 with John Forester as president. His complaints about special bicycle facilities and about the industry-backed CPSC all-reflector nighttime safety equipment requirement made the industry wary even as industry-friendly Board members took over in 1983 — leading to a substantial decline in League membership. By 1989, the leadership had shifted again and the League had substantially recovered, but it still did not have the strength, will or perspective always to uphold members’ interests. The child-seat issue is a prime example of this.

The industry’s interest in prohibiting carrying of infants on bicycles, as with the all-reflector system, was in shedding liability risk by establishing an equipment standard which could place responsibility on the consumer. Child-seat manufacturer Troxel was most concerned about the transportation of infants, because Troxel didn’t make any product suitable to transport them. Infants can’t hold up their heads, so helmets also came into the discussion. Never mind that a “baby pod” rigid papoose-like device can easily be imagined which would carry an infant far more safely than any open child seat. That is, you could crash, slamming such a pod onto the ground and sliding it along and afterwards, only have to wipe away the baby’s tears, assuming that you didn’t need serious medical attention yourself.

The League was at the table for the meeting at the BFA, and there is an informative article about it in a League magazine from 1989 or 1990 — sorry, I don’t have my copy right on hand. The League did not rise up against the ban, as is evident from the merely reportorial tone of the article.

Goofy bills — often, ride-on-the-left bills — can be introduced naively because some legislator or constituent has a bee in his or her bonnet about some safety concern. But that was not the case with the Massachusetts ban. It resulted from industry lobbying, through Safe Kids, and stemming out of the DC meeting.

The 1990 Massachusetts helmet and child-seat law did not include a liability exclusion for failure to use a helmet, though the seat belt law did include a liability exclusion: a person who causes a crash can’t dismiss a lawsuit by another, injured person who only fails to wear a seat belt. After four years of lobbying and making connections with safety advocates, cyclists did manage to get a liability exclusion into Massachusetts helmet law, but also, the maximum age requirement for helmet use went up from 12 to 17 years — political horse trading.

What is the case with the Oregon bill? I don’t know. It bears looking into. There would certainly be no consensus in the industry. The bill impacts more of the industry than the Massachusetts law, including Oregon trailer manufacturer Burley and bicycle retailers — especially Clever Cycles in Portland, which specializes in the kind of equipment whose use would be made illegal. The bill also impacts a larger percentage of the bicycling public.

The 1990 Massachusetts law was mostly an example of non-cyclist interests’ having taken the initiative, while cyclists weren’t paying enough attention. One argument for increasing the numbers of cyclists is that they then become a more powerful political force. That can sometimes, ironically, work against cyclists’ interests, if the recruits are mainly people with an unsophisticated understanding of their interests. Neglect of cyclists’ rights issues and support of poorly-conceived bicycle facilities feed on this dynamic. The lobbying for 1994 Massachusetts law and the current pushback against the Oregon bill are, on the other hand, what we would hope for: an active and well-informed cyclist constituency standing up for cyclists’ interests as best we can.

Posted in Bicycling | Tagged , , , , , , | 2 Comments

In defense of neighborhood traffic circles

Nieghborhood traffic circle in Berkeley, California

Neighborhood traffic circle in Berkeley, California

In a post to an e-mail list, I made the statement:

On narrow streets in residential areas…small traffic circles at intersections can slow traffic and reduce the temptation to use those streets for through travel…

…which elicited the following response from Ken O’Brien, whom I consider a friend, but who is also probably the most hard-core supporter of equal treatment for bicyclists and motorists I know. He rejects all special treatments, including ones which I regard as beneficial.

I’m very disappointed to read John Allen supports these foolish structures.

These bogus structures encourage left turning and straight-through traffic to enter intersections swinging right (to avoid and go around the obstacle). They encourage traffic to perform lateral merges (and a lateral merge away from the direction they intend to travel) immediately at the intersection. They break the rule that you want traffic to prepare for lateral merges early and separately from scanning for conditions ahead immediately at the intersection.

Please, please Mr Allen, reconsider your support for these illogical attempts at traffic calming.

I responded:

I can always count on Ken O’Brien to make principled and consistent comments based on traffic theory, and I would agree with most of his comments if such structures were installed on streets with fast or heavy traffic. In fact, one of my complaints about the reconstruction at the rotaries on Concord Avenue in Cambridge [Massachusetts] was the narrowing of the travel lanes, resulting in some of the very problems he describes.

I think that Ken and I can agree that rotaries do not inherently defy the rules of good, simple intersection design. A rotary [the Massachusetts name; also, “traffic circle” and in its modern, improved version, “roundabout”] is a street with several other streets entering at T intersections from the right, and the T intersection is a very ordinary type of intersection.

Drivers must merge with traffic in the rotary and then go around to the desired exit. When Ken says that drivers must make “a lateral merge _away_ from the direction they intend to travel” — well, they intend to travel around the rotary, and so they are merging into the traffic flow of the rotary. As drivers enter the rotary, conflicting traffic comes from only one direction, the left, rather than from three directions as in a “crossroads” intersection. Once in the rotary, it comes from only one direction, the right. To this extent, I do not agree with Ken’s comments about traffic flow. True, traveling straight through or turning left is more complicated and slower in a rotary than at a “crossroads” intersection — if there is no conflicting traffic — but that fact does not imply any inherent disagreement with ordinary traffic rules.

Bicyclists are impeded by the small rotaries much less than motorists are. The only maneuver that is slower for a bicyclist is the left turn: a bicyclist must go around the rotary to make a left turn. Because of the narrowness of a bicycle compared with motor vehicles (other than motorcycles), the small rotary does not slow a bicyclist’s travel at all for through travel or right turns.

Ken says that the small rotaries that “break the rule that you want traffic to prepare for lateral merges early and separately from scanning for conditions ahead immediately at the intersection.”

Actually, as these rotaries are typically on two-lane, two-way or one-lane, one-way streets, they don’t require any merges at all before the intersection, except by operators of slow, narrow vehicles such as bicycles. A bicyclist should merge into the traffic flow before going around the rotary, but then a bicyclist should do this for through travel at any rotary [and at many if not most other intersections]. The merge is particularly easy at the small rotaries because motorists, with their need to steer right around the center island, must slow to bicycle speed before entering the rotary. I’ve been in Berkeley [California] repeatedly and ridden through such rotaries, and I did not get the uneasy feeling I always get with bikeway junctions which defy the rules of traffic flow, the feeling that drivers, including me, need to have eyes in the back of our heads or X-ray vision to see traffic that might conflict with the movements we are preparing.

Now let’s step back a bit and look at the larger issue of reduction of traffic speed and volume in residential neighborhoods.

Wherever residential streets provide useful shortcuts or alternative routes, and especially in cities like Berkeley with a grid traffic pattern, use of residential streets by through motor traffic becomes a nuisance and a hazard. Residents demand a solution. What solutions are available?

Attempting to ban non-resident motorists would be unworkable, and a violation of the basic right of free travel. Location-specific electronic monitoring and control of vehicle speeds is an idea whose time has not yet come. Low speed limits and traffic-law enforcement can work if they have enough political support, but budgets for law enforcement are often inadequate, and while residents want to prevent speeding in their own neighborhoods, they want to avoid speeding tickets in other neighborhoods. Everyone has only one own neighborhood but there are many other neighborhoods, and so the political force to weaken enforcement usually wins out. We’ve seen this happen recently with challenges to photo-monitoring and ticketing of speeding motorists.

Because the “soft” measures aren’t very effective, residents demand, and you will find, some form of traffic calming in almost any residential neighborhood. Then the question becomes: what form of traffic calming?

The “spaghetti” pattern of curved streets in many newer suburban developments? Well, that can’t be retrofitted onto existing neighborhoods, and it’s confusing too — getting lost on the curved streets is very easy. Cul de sac development patterns? They force everyone including bicyclists to take long, roundabout routes on major arterials. Conflicting one-way signs from one block to the next (a favorite approach in the Boston, Massachusetts area)? That’s good at reducing the traffic volume on the residential streets, but works sorely to the disadvantage of bicyclists.

Bicycle-permeable barriers and diverters to break up through routes? Berkeley has some of these and I think they have their place, but they also can pose hazards if they result in nonstandard traffic movements, and they pose an issue of quick access for emergency vehicles. Speed humps and speed tables? I think they also have their place, but they do pose the issue of possible damage to vehicles. Bulb-outs, narrowing of the travel way, chicanes (making the traveled part of the street weave from one side to the other, for example by alternating parking on one side and then the other)? I think these measures have their place too, but they can work sorely to the disadvantage of bicyclists if the travel way is excessively narrowed. Snow clearance also becomes more difficult as the street gets more complicated.

All in all, I think that for bicyclists, the small rotaries are one of the least disadvantageous and most advantageous forms of traffic calming. By preventing motorists from traveling through intersections at high speed, the small rotaries succeed in reducing the speed and volume of traffic on the residential streets very substantially. Through-traveling motorists are discouraged from using these streets and are more likely to use arterial streets instead.

I’m sure that the success of the rotaries depends on design details; in particular, the traffic island must be large enough to accommodate the turning radii of vehicles that use the intersection. Success also depends on location. I have indeed seen one such rotary that failed — installed on Concord Street in Wellesley Lower Falls, Massachusetts and was made of collapsible, reflectorized poles. I wish I had a photo of it, but vehicles damaged it and it had been removed within a few weeks, before I got back to it with a camera.

Concord Street, which becomes Park Street in Weston, is a minor arterial street with a connection at each end to a numbered state highway and another connection in the middle to the Massachusetts Turnpike. As much as residents living along this street might have wanted otherwise, the needs and desires of through-traveling motorists prevailed. The small rotaries in Berkeley, on the other hand, do appear to have succeeded.

Posted in Bicycle facilities, Bicycling, Roundabouts, traffic circles | Tagged , , , , , | 4 Comments

Lyon study — cyclists ride faster in rush hour?

A blog posting published by the Massachusetts Institute of Technology describes a study of cycling in Lyon, France.

News accounts of the report are making some rather strange assertions, such as that cyclists ride faster during rush hour than in the middle of the day, and faster on Wednesdays. On the other hand, the Lyon study is very interesting in that it aggregates data on millions of bicycle trips, recorded in the database of Lyon’s card-swipe bicycle-rental system.

I see two problems with this study, and more so with news items about it: not all data were collected that would be needed to describe cyclists’ trips accurately; also, there is a rush to conclusions, without looking at some rather important characteristics of cyclists’ trips.

Certainly, cycling can achieve shorter trip times than motoring when motor traffic is congested, whether by cyclists’ filtering forward on the same street or by choosing other streets, paths, riding against traffic, whatever. What I can’t grasp is how any individual cyclist would achieve a shorter travel time in rush hour than at other times.

Congested motor traffic slows bicyclists, though not as much as it slows motorists — because cyclists have a lower speed capability in the first place, and because cyclists have a greater choice of routes, and can filter forward. Even with bike lanes (of which, according to the article, Lyon doesn’t have any), congested motor traffic slows bicyclists. But also, congested bicycle traffic and pedestrian traffic slow bicyclists.

The Lyon data include only the times and locations of rental and return of the bicycles, and odometer readings. The data, then, cannot show where bicyclists went, and can record only an average speed. Importantly, the slower mid-day times may reflect rentals during which the bicycle is parked in mid-trip — shopping trips, or trips to appointments, lunch dates, classes, (Lyon is a major university city). Women’s speed capability is generally only slightly lower than men’s; to claim it as an important explanation is at least vaguely offensive. Morning and evening bicycle commuters, whether male or female, might be regular bicycle users, in better physical condition, more skillful in traffic and so capable of higher speeds. Without demographic data, there’s no way to know.

The report does include some interesting results about the shortest travel times, which it is safe to assume do not involve parking in mid-trip.

Bicycles included in the study are available at rental stations spaced around Lyon. A renter may obtain a bicycle at one station and leave it at another, making the system practical for single-direction trips. But renters must walk to the stations — the bicycles are, for example, not at their homes. Bicycles will not be used for the shortest trips unless stations happen to be very convenient to trip origins and destinations. Also, the system works only within the limited area where stations exist. These factors can be expected to affect the trip lengths recorded in the study.

I look forward with eager anticipation to a study using GPS data correlated with user data, so it is possible to categorize the cyclists, determine where they went, how fast they actually rode, and whether they parked the bicycle in mid-trip.

Posted in Bicycle facilities, Bicycling, Laws | Tagged , , , , , , , , , , , , | 3 Comments

Bob Mionske on “Driver Sues Family of Deceased Cyclist”

In a Bicycling Magazine blog posting, Bicycling attorney Bob Mionske describes an appalling situation: a motorist driving over 80 mph in a 45 mph zone struck and killed a teenage bicyclist in Connecticut. The bicyclist’s family sued the driver — but then, the driver countersued the family, claiming that the bicyclist was negligent in not wearing a helmet.

Connecticut law excludes such claims. Mionske says that the Connecticut legislature, in its wisdom, excluded the claims because bicycle helmets cannot protect bicyclists in high-speed collisions with motor vehicles.

I seriously question Mionske’s explanation. The same exclusion exists in laws requiring seat belts and automotive child seats, which usually do protect their users in collisions. Also, bicycle helmets do protect bicyclists in many if not most car-bike collisions. Only a small percentage involve high-speed impacts. The bicyclist cut off by a crossing or turning vehicle, or sideswiped, may only be dumped onto the road or onto the hood of a car, and head injury may be survivable or even completely avoided if the bicyclist is wearing a helmet.

Any passive safety equipment — seatbelt, child seat, helmet — can sometimes prevent injury, but cannot prevent a crash. To allow the victim to sue the perpetrator, and to prevent the perpetrator from suing the victim, is a moral issue, not a technical one. This is even more important when a law is poorly understood and weakly enforced, as with bicycle helmet laws. Children often ride bicycles where parents can not monitor them. Distribution of helmets also is an issue, when a helmet can cost as much as a cheap bicycle. In states with contributory negligence statutes, it’s worse yet: a finding of 1% negligence on the part of the victim results in dismissal of a lawsuit against the perpetrator.

To my knowledge, I was first to raise the issue of the liability exclusion. Back in the 1980s, well-meaning safety advocates, most importantly Safe Kids USA, had begun promoting bicycle helmet laws. A law was enacted in Massachusetts, where I live, without a liability exclusion. As a member of the League of American Wheelmen State Legislative Committee, I campaigned for a better law, and it was enacted. The League’s Consumer Affairs Committee, on which I served, publicized the issue of the liability exclusion, and it was written into the laws of many states, including Connecticut.

The League remained neutral on the issue of helmet laws, as its members’ opinion on them was divided — also realizing that fighting helmet laws could look bad and might not succeed; but the League insisted that such laws include the same liability exclusion as other safety-equipment laws. To their credit, safety advocates responded positively, supporting laws with the liability exclusion and innovative penalty structures. Examples:

  • no penalty, but only a warning;
  • penalty waived if the violator purchased a helmet;
  • positive incentive, such as coupon for a free serving at an ice cream shop for a kid seen wearing a helmet.

The safety advocates also initiated helmet distribution campaigns for disadvantaged children. With time, the awareness became widespread that educational and promotional campaigns, more than laws, would be effective in increasing the rate of helmet use in the USA.

Helmets sometimes prevent injury and sometimes don’t — but that wasn’t the issue that propelled the campaign for liability exclusions. That a helmet would not have prevented injury could, quite to the contrary, point out the seriousness of a crash and make a persuasive argument that a bicyclist should recover damages!

Posted in Bicycling, Equipment, Laws | Tagged , , , , , , , , , , , , , , , , , | 2 Comments

About bicycle lighting and onions

A chance meeting can lead to unexpected discoveries.

I met and spoke with Kurt Cibulski following a reading from a new book by its author, a mutual friend. I had arrived at the reading by bicycle; Kurt and I were talking bicycling. Kurt explained that he has a seizure disorder. The bright, rapidly-flashing LED headlights that bicyclists are increasingly using can initiate a seizure for him. “Who’d ‘a’ thunk it.” thought I.

Who? A proper, national standards-setting body, because someone, somewhere, would have brought the issue to its attention. On second thought, it’s obvious. Flashing lights are well-known to trigger seizures.

It’s also a truism that flashing lights draw attention. Many bicyclists ride in urban areas with overhead lighting, and don’t need a steady headlight beam to guide their way. But on the other hand…there’s the seizure problem.

Without careful standards setting, issues like this slip through the cracks. Designs get based on whim, commercial appeal, economies of production and avoidance of liability risk.

In the USA, individual cyclists are held responsible under state laws for using lights at night, but law enforcement is near-nonexistent, and many cyclists don’t use lights. The USA does have a Consumer Product Safety Commission, which, under pressure from the bicycle industry, has set standards — weak standards — only for retroreflectors on bicycles, never for lights. Retroreflectors only work for drivers whose headlights are pointed at them, and do not light up for the pedestrian stepping off the curb, the motorist in the cross street ahead, two bicyclists on a path approaching each other head-on. Bicycle manufacturers can point to Federal regulations and say that they are doing something for nighttime safety, while not being held responsible for these deficiencies.

This situation holds some ironies and unintended consequences beyond the obvious one that cyclists are being injured and killed for want of lights. The lack of standardization in the USA has given lighting manufacturers free rein to innovate, and has led to the availability of some very fine bicycle lighting systems. In the USA, when you see a cyclist with a light, you will probably see that cyclist from a good, long distance, because the light is a very good light.

In Germany, by way of contrast, lights are required on new bicycles. Manufacturer pressure comes to bear in a different way. To keep expense down, most lights only meet the letter of the law and are are less bright, and much less reliable, than the good ones sold in the USA. Bureaucratic inertia has compounded the problem: Germany requires bicycle lights to be powered by a generator. That made sense 40 years ago when battery lights were weak and battery replacement was expensive. Today’s efficient light-emitting diodes and high-capacity rechargeable batteries make battery lights economical and practical.

Generator lights also have improved, thanks to advances in technology and to discerning European cyclists’ demand for better lights that also meet the requirements of their laws — but a good generator lighting system can cost half as much as the bicycle on which it is installed.

A restrictive legal climate leads to this kind of market distortion; contrast this with the wider scope of innovation and slip-through-the-cracks issues in the US market.

I can’t help noticing that kiosk “bike share” (actually rental) bicycles that are becoming popular in American cities all are equipped with LED headlights and taillights, powered by a generator in the front hub. It only makes sense. The rental agencies have a more direct liability exposure than bicycle manufacturers who sell to individuals. But — the lights on the rental bicycles flash, because the generators produce alternating current and the output is not smoothed. Possibly also because flashing lights are popular and nobody though of the seizure-disorder issue.

Where are we heading with all this? I think that we’re approaching a political tipping point where regulations requiring lights on at least some kinds of new bicycles might be possible in the USA: both because of an increase in interest in utility cycling, and because improving technology had made bicycle lights much less expensive, more reliable and more compact. I mean, if little children can have flashing LEDs in the soles of their shoes, just to look cool, it isn’t much of a leap to think that every new utility bicycle could be equipped with lights.

But we also need to be smart, and look forward as technology improves, so regulations don’t box us in with outdated technology and inferior products, as in Germany.

Now, about those onions:

To give Kurt proper credit in this article, I asked his name and came up with another unexpected discovery. He spelled his name, and then volunteered, “Cibulski means ‘onion man’ in Polish. It’s a pan-European word.” Yes! Again, who’d ‘a’ thunk it? German, Zwiebel. Spanish, cibolla. I looked it up, and found variants in languages as diverse as Basque, Czech, Gaelic, Norwegian, Romanian…

I suppose that there’s another parallel, besides the two unexpected discoveries. Bicycle lighting issues, with all the political and technological complications, peel apart in layers like an onion, too.

Thanks, Kurt!

Posted in Bicycling, Equipment, Laws, lighting | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 11 Comments

Davis Planners and Advocates Opine on Sidepaths

This post supplements my previous post linking to documents about Davis bicycle facilities. Please bear in mind that Davis was the first community to introduce bike lanes in the USA, and that its bicycle program strongly favors conventional bike lanes, which are separated from the adjacent lane only by a painted stripe. I have found that the Davis documents uniformly and strongly recommend against bike lanes behind barriers or parked cars. Not only that, the recent warnings are more definite than the early ones. Some quotes, starting with the most recent and working backwards in time:

Theodore Buehler, Fifty years of bicycle policy in Davis, CA (Master’s thesis, 2007). See pages 50 ff., “Lane location relative to motorized traffic”.

The early experiments included three different types of bike facilities (see examples at the top of this section):

  1. bike lanes between car lanes and the parking lane (Third St.),
  2. bike lanes between the parking lane and the curb (Sycamore Lane), and
  3. bike paths adjacent to the street, between the curb and the sidewalk (Villanova Ave.).

The first bike lanes included all of these types, to test them in real life to see how effective they were. The on-road lanes worked best, the behind-parking lanes were the worst, and the adjacent paths were found to work in certain circumstances. This is an example of the wide level of experimentation that occurred during this period. Had the city tried to do extensive research without construction, it might have settled on an inferior design. And not having tried all three designs, it might not have recognized it as inferior, and the entire experiment could have been declared a failure.

Dale Lott (one of the early advocates for special bicycle facilities in Davis, who also conducted research as to their safety and effectiveness), “How Our Bike Lanes Were Born“, op-ed piece which appeared in the Davis Enterprise in 2003:

We insisted on some experiments that turned out well and some that were flops.

One flop was on the first block of Sycamore north of Fifth where we put bike lanes next to the curb with parking next to the auto travel lane. It looked great on paper, but was a mess on pavement. When cars turned into the University Mall driveway, they crossed the bike lane. Both driver and rider, whose view of each other had been obscured by the parked cars, had an emergency situation.

David Takemoto-Weerts (University of California, Davis Bicycle Coordinator, A Bicycle-Friendly Community, the Davis Model (conference presentation, 1998)

Because Davis pioneered the bike lane and other bicycle facilities in this country, it is not surprising that some “experiments” were less successful than others. One such example was the construction of “protected” bike lanes where motor vehicle and bicycle traffic was separated by a raised “buffer” or curbing. In some cases, the bike lane was established between the parking shoulder and the curb line (i.e. cars were parked on the left of the bike traffic lane). Needless to say, any “benefits” of such facilities were soon found to be outweighed by the many hazards created for their users.

Most such well-intentioned, but ill-fated designs were phased out long ago. However, some facility design decisions made decades ago were not so easy to remedy. The most pervasive example in Davis is the two-way bike path immediately adjacent to a roadway. Particularly problematic are single two-way paths located on only one side of the adjacent road. The problems associated with these designs have been described in any number of publications, and they are well illustrated at several locations in Davis. In spite of this documentation, some residents, city officials, and developers remain quite vocal in advocating such facilities when new construction is being planned and designed. The city and campus have attempted a variety of mitigation strategies to reduce the hazards or inefficiencies associated with these side paths, but many observers believe that continuing to build such facilities is wasteful at best.

Deleuw, Cather and Company.: Davis Bicycle Circulation and Safety Study. 1972 (excerpt — for complete document in three parts, see table of contents page.

Protected lanes

…Protected lanes located between the parking shoulder and curb line have most positive separation. However, the parked cars create sight distance problems at driveways and intersections. Inability to cross streets in midblock in this type of treatment results in two-way usege which, in turn, leads to intersection problems described subsequently…

Sidewalk and Independent paths

Sidewalk pathways eliminate midblock bike-motor vehicle friction. However, frictional interference of pedestrians may discourage usage of these facilities as does frequent interruption by cross streets and driveways or meandering of the path. An additional problem is establishment of a visual relationship between motor vehicles on the sidewalk path on approaches to intersections…

Posted in Bicycling, Bike lanes, Crashes, Cycle tracks, Sidepaths | Tagged , , , , , , , , , , , , , , , | 4 Comments

Davis, California historical documents

Thanks to John Ciccarelli, Robert Sommer and David Takemoto-Weerts — and David’s students — among others — I am able to post online a number of documents about bicycling in Davis, California and the Davis bicycle program. Davis has the longest experience with a bicycle program of any city in the USA, and a large population of cyclists thanks to its being the home of the University of California at Davis.

You may surf to my table of contents page for the Davis documents and a complete list of people I have to thank — but also please read the rest of this post:

Of particular note are the conclusions which Davis has reached about different types of bicycle facility designs. Davis pioneered some brilliant design innovations, for example, bicycle traffic circles. On that topic, also see videos here and here.

Davis also has been willing to learn from mistakes and move onward. In another post, I have assembled quotes about Davis’s experience with barrier-separated bike lanes, versus conventional bike lanes separated from the adjacent lane only by a painted stripe, an issue which is particularly relevant as I write this in 2010.

Posted in Bicycling, Roundabouts | Tagged , , , , , , , , , , , , | 2 Comments

Green Wave, Checkered Flag?

A green wave moves out, Manhattan, 1986.

I am writing this post in response to comments by Mighk Wilson and Khalil Spencer on another post on this blog. They discussed the difficulty of cycling in a city with synchronized traffic signals (a “green wave”) set to a higher speed than cyclists can manage, and the potential of a slower green wave to make a street more attractive for cycling. I’d like to take a more general  look at the green wave and how it affects traffic.

My understanding of the green wave is based mostly on experience. (And so, anyone who can provide more details based on theory, or can correct me, please do…)

In my high-school years, I lived and learned to drive in Baltimore, Maryland, USA, one of the first cities to implement traffic signal synchronization. I have also lived, driven and cycled in Manhattan, where most traffic lights are timed to create green waves.

A green wave can only work under a limited set of conditions. If these do not apply, then despite best efforts to time traffic lights for the smoothest possible traffic flow, a signal sequence can still appear random. Drivers have no clear strategy for avoiding red lights beyond speeding up when the next light is still green. On the other hand, when a green wave is working smoothly, drivers may feel as if a green-wave Tinkerbelle is darting along overhead and pointing her magic wand at every traffic light to turn it green.

Traffic engineers use clever math so a green wave, surprisingly, can be applied to streets heading in more than one direction the same time — though it words better if they are one-way. Heading north on Charles Street from church in downtown Baltimore, my family would get  green lights for block after block, except at the few two-way streets, where all bets were off. Then as we headed into the more random street pattern at the north end of the city, we just had to take each traffic light as it was. On the other hand, traffic lights were less frequent in this less densely built-up area.

My experience was similar in Manhattan. The green wave worked smoothly on one-way streets and avenues, but  when crossing two-way ones, and when driving on them, it didn’t. This obvious difference gives drivers a strong incentive to use one-way streets and avenues for through travel, where possible. Advocates of the sort who would view streets as a neighborhood resource often protest conversions of two-way streets to one-way, see for example this call to action. Traffic engineers who are concerned with the effect on congestion and crash rates have the opposite opinion — see, for example, this presentation. (I expect that the choice is not quite so stark as these two examples make it — as usual, such decisions must be made on a case-by-case basis.)

A green wave works smoothly only when there are no stop signs on a green wave street, though stop signs can be used on cross streets.  Double-parked vehicles, vehicles that have entered the street and are waiting for a light to change, vehicles — including bicycles — that can’t keep up with the pace set by the signals — anything that slows traffic down or reduces the number of lanes available increases the likelihood of not keeping up with the pase set by the lights.

A green wave often encourages travel faster than the pace set by the signals. That’s because there is an advantage in racing to the front of a platoon — where each signal has just changed to green — when preparing a turn — then after turning, racing to the end of the block so as to catch the end of the green there. A driver may speed through another few blocks to get to the front of the platoon before turning again. The advantage of this tactic is quickly obvious: After turning the corner at the head of a green wave onto another green wave street, a driver will be facing a signal at the next intersection which is about to turn yellow, then red.

The typical 30-mile per hour speed limit in grid cities like Manhattan often leads to motorists’ speeds considerably in excess of that limit, and to more unpleasant conditions for bicyclists.

On the other hand, synchronizing signals to a speed more comfortable for bicycling will discourage use of a street for through motor-vehicle travel, making it more attractive for bicycling. I have ridden on a street in Saint Petersburg, Florida, with the signals synchronized to 15 miles per hour, and it achieved that goal quite well. It would have worked better if it had been one-way — it ran up a moderate slope from the waterfront, and for most bicyclists, 15 miles per hour was hard to maintain. Downhill, on the other hand, the speed setting could have been 20 miles per hour without creating difficulties for bicyclists.

Bear in mind, though, that comfortable level-ground travel speeds for bicyclists cover a 3 to 1 range , from about 25 miles per hour down to 8 miles per hour — not nearly as uniform as for motorists, even considering the issues with motorists’ speed already mentioned. A predictable increase in the volume of electrically-assisted bicycles and motor scooters will complicate the issue of speed setting even further. The advantage of a slow green wave, given these issues, is not so much to allow bicyclists to travel farther before facing a red light as to discourage use of the street for through travel by motorists.

Posted in Bicycling, New York City, Sidepaths, Traffic Signals | Tagged , , , , , , , , , , , , , , , , , , | 1 Comment